Ukrainian Mathematical Journal

, Volume 54, Issue 9, pp 1393–1401 | Cite as

On Some Problems of Polynomial Approximation of Entire Transcendental Functions

  • S. B. Vakarchuk
  • S. I. Zhir
Article

Abstract

For entire transcendental functions of finite generalized order, we obtain limit relations between the growth characteristic indicated above and sequences of their best polynomial approximations in certain Banach spaces (Hardy spaces, Bergman spaces, and spaces \(B\left( {p,q,{\lambda }} \right)\)).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. K. Daugavet, Introduction to the Theory of Approximation of Functions [in Russian], Leningrad University, Leningrad (1977).Google Scholar
  2. 2.
    R. S. Varga, “On an extension of a result of S. N. Bernstein,” J. Approxim. Theory, 1, No. 2, 176–179 (1968).Google Scholar
  3. 3.
    A. R. Reddy, “Approximation of an entire function,” J. Approxim. Theory, 3, No. 1, 128–137 (1970).Google Scholar
  4. 4.
    A. R. Reddy, “Best polynomial approximation to certain entire functions,” J. Approxim. Theory, 5, No. 1, 97–112 (1972).Google Scholar
  5. 5.
    M. N. Sheremeta, “On relationship between the growth of the modulus of an entire function and the moduli of the coefficients of its power expansion,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 2, 100–108 (1967).Google Scholar
  6. 6.
    M. N. Sheremeta, “On relationship between the growth of entire functions or zero-order functions analytic in a circle and the coefficients of their power expansion,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 6, 115–121 (1968).Google Scholar
  7. 7.
    S. K. Balashov, “On relationship between the growth of an entire function of generalized order, the coefficients of its power expansion, and the distribution of roots,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 8, 10–18 (1972).Google Scholar
  8. 8.
    S. M. Shan, “Polynomial approximation of an entire function and generalized orders,” J. Approxim. Theory, 19, No. 4, 315–324 (1977).Google Scholar
  9. 9.
    A. V. Batyrev, “On the best polynomial approximation of analytic functions,” Dokl. Akad. Nauk SSSR, 76, No. 2, 173–175 (1951).Google Scholar
  10. 10.
    I. I. Ibragimov and N. I. Shikhaliev, “On the best polynomial approximation of analytic functions in a space of analytic functions,” Dokl. Akad. Nauk SSSR, 227, No. 2, 280–283 (1976).Google Scholar
  11. 11.
    A. Giroux, “Approximation of entire functions over bounded domains,” J. Approxim. Theory, 28, No. 1, 45–53 (1980).Google Scholar
  12. 12.
    S. B. Vakarchuk, “On the best polynomial approximation of entire transcendental functions in Banach spaces. I,” Ukr. Mat. Zh., 47, No. 9, 1123–1133 (1994).Google Scholar
  13. 13.
    S. B. Vakarchuk, “On the best polynomial approximation of entire transcendental functions in Banach spaces. II,” Ukr. Mat. Zh., 47, No. 10, 1318–1322 (1994).Google Scholar
  14. 14.
    S. B. Vakarchuk, “On the best polynomial approximation of functions analytic in the unit circle in Banach spaces,” Mat. Zametki, 55, No. 4, 6–14 (1994).Google Scholar
  15. 15.
    M. I. Gvaradze, “On one class of spaces of analytic functions,” Mat. Zametki, 21, No. 2, 141–150 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • S. B. Vakarchuk
    • 1
  • S. I. Zhir
    • 1
  1. 1.Ukrainian Academy of Customs ServiceDnepropetrovsk

Personalised recommendations