Conservation Genetics

, Volume 4, Issue 2, pp 157–166 | Cite as

Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus)

  • R. Kuehn
  • W. Schroeder
  • F. Pirchner
  • O. RottmannEmail author


The red deer (Cervus elaphus) populationof Bavaria in Southern Germany was severelyreduced during the 19th century due toover-hunting. The species has since recoveredwithin designated areas. Subsequent habitatfragmentation presumably has changed thegenetic structure of Bavarian red deer.In order to assess the genetic diversity, weanalysed samples obtained from nine differentBavarian and two adjacent (Thueringen andCzech-Republic) red deer populations,genotyping 19 microsatellite loci. Our analysesrevealed moderate and significant differencesin diversity. Referring to assignment tests,the genetic differentiation of Bavarian reddeer was sufficient to assign an individual'sorigin to the correct population at an averageof 91.6%. The correlation of genetic andgeographic distance matrices revealed noevidence for isolation by distance. Thecoalescent model analysis suggests that thegenetic structure used to be characterized by adrift–gene flow equilibrium and is nowinfluenced by drift and disruption of the geneflow. Only three of the examined populationsshowed a probability of less than 10% that twogenes within these populations share a commonancestor (FIS-value). Twopopulations had high FIS values,indicating the influence of drift.Additionally, the intrapopulation indicesrevealed a low variability in thesepopulations. The estimated effective populationsizes (Ne) were generally in thesame range as the actual population sizes. Theinbreeding rates, based on the estimated Ne, and the inbreeding coefficientssuggested that the Bavarian red deerpopulations are in a stable state.

Cervus elaphus gene flow genetic diversity genetic drift microsatellites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anastassiadis C, Leyhe B, Olsaker I, Friedl R, Rottmann O, Hiendleder S, Erhardt G (1996) Three polymorphic microsatellites for bovine chromosomes 7, 12 and 19. Animal Genetics, 27(2), 125–126.Google Scholar
  2. Beninde J (1988) Zur Naturgeschichte des Rotwildes. Reprint of the original volume of 1937, Parey, Berlin.Google Scholar
  3. Bishop MD, Kappes SM, Keele JW et al. (1994) A genetic linkage map for cattle. Genetics, 136(2), 619–639.Google Scholar
  4. Ciofi C, Bruford MW (1999) Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis. Molecular Ecology, 8(12 Suppl 1), S17–S30.Google Scholar
  5. Clutton-Brock TH (1985) Fortpflanzung beim Rothirsch: Kosten-Nutzen-Prinzip. Spektrum der Wissenschaft (April), 114–121.Google Scholar
  6. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001–2014.Google Scholar
  7. Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics, 153(4), 1989–2000.Google Scholar
  8. DeWoody JA, Hoeneycutt RL, Skow LC (1995) Microsatellites in white tailed deer. Journal of Heredity, 86(4), 317–319.Google Scholar
  9. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes, application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.Google Scholar
  10. Falconer DS (1981) Introduction to Quantitative Genetics. Longman, New York.Google Scholar
  11. Goodman SJ, Tamate HB, Wilson R, Nagata J, Tatsuzawa S, Swanson GM, Pemberton JM, McCullough DR (2001) Bottlenecks, drift and differentiation, the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Molecular Ecology, 10(6), 1357–1370.Google Scholar
  12. Grosse WM, Finlay O, Kossarek LM, Clark TG, McGraw RA (1995) Five bovine microsatellite markers derived from skeletal muscle cDNA, RME01, RME11, RME23, RME25 and RME33. Animal Genetics, 25, 126–127.Google Scholar
  13. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometric, 48(2), 361–372.Google Scholar
  14. Haldane JBS (1954) An exact test for randomness of mating. Journal of Genetics 52, 631–635.Google Scholar
  15. Hogan BLM, Costantini F, Lacy E (1986) Manipulating the Mouse Embryo, Section D. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  16. Kuehn R, Anastassiadis C, Pirchner F (1996) Transfer of bovine microsatellites to the cervine (Cervus elaphus). Animal Genetics, 27(3),199–201.Google Scholar
  17. Moore SS, Barendse W, Berger KT, Armitage SM, Hetzel DJS (1992) Bovine and ovine DNA microsatellites from the EMBL and GENBANK database. Animal Genetics, 23, 463–467.Google Scholar
  18. Moore SS, Byrne K, Berger KT, Barendse W, McCarthy F, Womack JE, Hetzel DJ (1994) Characterization of 65 bovine microsatellites. Mammalia Genome, 5, 84–90.Google Scholar
  19. Mommens G, Coppieters W, Van de Weghe A, Van Zeveren A, Bouquet Y (1994) Dinucleotide repeat polymorphism at the bovine MM12E6 and MM8D3 loci. Animal Genetics, 25, 368.Google Scholar
  20. O'Ryan C, Harley EH, Bruford MW, Beaumont M, Wayne RK, Cherry MI (1998) Microsatellite analysis of genetic diversity in fragmented South African buffalo populations Animal Conservation, 1(2), 85–94.Google Scholar
  21. Ohta T (1982) Population genetics of multigene families. Advances in Biophysics, 15, 173–179.Google Scholar
  22. Raymond M, Rousset F (1995a) GENEPOP (version 1.2), Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248–249.Google Scholar
  23. Raymond M, Rousset F (1995b) An exact test for population differentiation. Evolution, 49, 1280–1283.Google Scholar
  24. Reinhard B, Hefter H (1992) Das Hochwild in den Hassbergen, Holl Druck, Hofheim.Google Scholar
  25. Reynolds J, Weir BS, Cockerham C (1983) Estimation of the coancestry coefficient, Basis for a short-term genetic distance. Genetics, 105, 767–779.Google Scholar
  26. Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 22–225.Google Scholar
  27. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145(4), 1219–1228.Google Scholar
  28. Schneider S, Kueffer J-M, Roessli D, Excoffier L (1997) Arlequin ver. 1.1, A software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
  29. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139(1), 457–462.Google Scholar
  30. Soulé ME (1980) Thresholds for survival: Maintaining fitness and evolutionary potential. In: Conservation Biology–An Evolutionary-Ecological Perspective (eds. Soulé ME, Wilcox B). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  31. Steffen P, Eggen A, Dietz AB, Womack JE, Stranzinger G, Fries R (1993) Isolation and mapping of polymorphic microsatellites in cattle. Animal Genetics, 24, 121–124.Google Scholar
  32. Tate M (1997) Evolution of Ruminant Chromosomes. Dissertation, University of Otago, Dunedin, New Zealand.Google Scholar
  33. Thieven U, Harlizius B, Simon D (1995) Dinucleotide repeat polymorphism at the bovine HAUT 1 and HAUT 14 loci. Animal Genetics, 26, 123.Google Scholar
  34. Thieven U, Solinas-Toldo S, Friedl R, Masabanda J, Fries R, Barendse W, Simon D, Harlizius B (1997) Polymorphic CAmicrosatellites for the integration of the bovine genetic and physical map. Mammalian Genome, 8(1), 52–55.Google Scholar
  35. Vaiman D, Mercier D, Moazami GK et al. (1994) A set of 99 cattle microsatellites, Characterization, synteny mapping, and polymorphism. Mammalian Genome, 5(5), 288–297.Google Scholar
  36. Van Zeveren A, Peelman LJ, Van deWeghe A, Bouquet Y (1995) A genetic study of four Belgian pig populations by means of seven microsatellite loci. Journal of Animal Breeding and Genetics, 112(3), 191–204.Google Scholar
  37. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.Google Scholar
  38. Wright S (1973) Evolution and the Genetics of Populations. Volume 4: Variability Within and Among Natural Populations. University of Chicago Press, Chicago.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R. Kuehn
    • 1
  • W. Schroeder
    • 1
  • F. Pirchner
    • 2
  • O. Rottmann
    • 2
    Email author
  1. 1.Fachgebiet fuer Wildbiologie und WildtiermanagementTechnische Universitaet Muenchen-WeihenstephanFreising
  2. 2.Institut fuer TierwissenschaftenTechnische Universitaet Muenchen-WeihenstephanFreising

Personalised recommendations