Advertisement

Journal of Clinical Immunology

, Volume 23, Issue 3, pp 147–161 | Cite as

Cytokines and Transcription Factors That Regulate T Helper Cell Differentiation: New Players and New Insights

  • Davide Agnello
  • Carla S. R. Lankford
  • Jay Bream
  • Akio Morinobu
  • Massimo Gadina
  • John J. O'Shea
  • David M. Frucht
Article

Abstract

The differentiation of naive CD4+ T cells into subsets of T helper cells is a pivotal process with major implications for host defense and the pathogenesis of immune-mediated diseases. Though the basic paradigm was discovered more than 15 years ago, new discoveries continue to be made that offer fresh insights into the regulation of this process (1). T helper (TH)1 cells produce interferon (IFN)-γ, promoting cell-mediated immunity and control of intracellular pathogens. We now know that TH1 differentiation is regulated by transcription factors such as T-bet, Stat1, and Stat4, as well as cytokines such as IL-12, IL-23, IL-27, type I IFNs, and IFN-γ. In contrast, TH2 cells produce IL-4, which promotes allergic responses and is important in host defense against helminths. The transcription factors Stat6, GATA-3, c-Maf, NFATs, and the cytokine IL-4 promote TH2 differentiation. These key regulators of TH differentiation are the subject of this review.

T helper (TH) cells differentiation TH1 cells TH2 cells interferon-γ interleukin (IL)-4 IL-12 IL-23 IL-27 Stat1 Stat4 Stat6 GATA-3 c-Maf NFATs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348-2357, 1986Google Scholar
  2. 2.
    Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 383(6603):787-793, 1996Google Scholar
  3. 3.
    Strober W, Ludviksson BR, Fuss IJ: The pathogenesis of mucosal inflammation in murine models of inflammatory bowel disease and Crohn disease. Ann Intern Med 128(10):848-856, 1998Google Scholar
  4. 4.
    Bonecchi R, Bianchi G, Bordignon PP, et al.: Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187(1):129-134, 1998Google Scholar
  5. 5.
    D'Ambrosio D, Iellem A, Bonecchi R, et al.: Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol 161(10):5111-5115, 1998Google Scholar
  6. 6.
    Sallusto F, Lenig D, Mackay CR, Lanzavecchia A: Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187(6):875-883, 1998Google Scholar
  7. 7.
    Monney L, Sabatos CA, Gaglia JL, et al.: Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871):536-541, 2002Google Scholar
  8. 8.
    Meyers JH, Ryu A, Monney L, et al.: Cutting edge: CD94/NKG2 is expressed on Th1 but not Th2 cells and costimulates Th1 effector functions. J Immunol 169(10):5382-5386, 2002Google Scholar
  9. 9.
    Murphy KM, Ouyang W, Farrar JD, et al.: Signaling and transcription in T helper development. Annu Rev Immunol 18:451-494, 2000Google Scholar
  10. 10.
    Farrar JD, Asnagli H, Murphy KM: T helper subset development: Roles of instruction, selection, and transcription. J Clin Invest 109(4):431-435, 2002Google Scholar
  11. 11.
    Carballido JM, Faith A, Carballido-Perrig N, Blaser K: The intensity of T cell receptor engagement determines the cytokine pattern of human allergen-specific T helper cells. Eur J Immunol 27(2):515-521, 1997Google Scholar
  12. 12.
    Ausubel LJ, Krieger JI, Hafler DA: Changes in cytokine secretion induced by altered peptide ligands of myelin basic protein peptide 85–99. J Immunol 159(5):2502-2512, 1997Google Scholar
  13. 13.
    Tao X, Constant S, Jorritsma P, Bottomly K: Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J Immunol 159(12):5956-5963, 1997Google Scholar
  14. 14.
    Ben-Sasson SZ, Gerstel R, Hu-Li J, Paul WE: Cell division is not a “clock” measuring acquisition of competence to produce IFN-gamma or IL-4. J Immunol 166(1):112-120, 2001Google Scholar
  15. 15.
    Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, et al.: B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: Application to autoimmune disease therapy. Cell 80(5):707-718, 1995Google Scholar
  16. 16.
    Esche C, Shurin MR, Lotze MT. IL-12. In: Cytokine Reference, JJ, Oppenheim, M. Feldmann, (Eds.). San Diego, Academic Press, 2000, pp 189-201Google Scholar
  17. 17.
    Trinchieri G, Scott P.: Interleukin-12 Basic principles and clinical applications. Curr Top Microbiol Immunol 238:57-78, 1999Google Scholar
  18. 18.
    Dong C, Flavell RA: Th1 and Th2 cells. Curr Opin Hematol 8(1):47-51, 2001Google Scholar
  19. 19.
    Glimcher LH: Lineage commitment in lymphocytes: Controlling the immune response. J Clin Invest 108(7):s25-s30, 2001Google Scholar
  20. 20.
    O'Shea JJ, Gadina M, Schreiber RD: Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109 (Suppl) S121-S131, 2002Google Scholar
  21. 21.
    O'Shea JJ, Paul WE: Regulation of T(H)1 differentiation–controlling the controllers. Nat Immunol 3(6):506-508, 2002Google Scholar
  22. 22.
    Ho IC, Glimcher LH: Transcription: tantalizing times for T cells. Cell 109 (Suppl):S109-S120, 2002Google Scholar
  23. 23.
    Grohmann U, Belladonna ML, Bianchi R, et al.: IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production. Immunity 9(3):315-323, 1998Google Scholar
  24. 24.
    Lawless VA, Zhang S, Ozes ON, et al.: Stat4 regulates multiple components of IFN-gamma-inducing signaling pathways. J Immunol 165(12):6803-6808, 2000Google Scholar
  25. 25.
    Smeltz RB, Chen J, Hu-Li J, Shevach EM: Regulation of interleukin (IL)-18 receptor alpha chain expression on CD4(+) T cells during T helper (Th)1/Th2 differentiation. Critical downregulatory role of IL-4. J Exp Med 194(2):143-153, 2001Google Scholar
  26. 26.
    Yoshimoto T, Takeda K, Tanaka T, et al.: IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J Immunol 161(7):3400-3407, 1998Google Scholar
  27. 27.
    Fukao T, Frucht DM, Yap G, Gadina M, O'Shea JJ, Koyasu S. Inducible expression of Stat4 in dendritic cells and macrophages and its critical role in innate and adaptive immune responses. J Immunol 166(7):4446-4455, 2001Google Scholar
  28. 28.
    Frucht DM, Fukao T, Bogdan C, Schindler H, O'Shea JJ, Koyasu S: IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol 22(10):556-560, 2001Google Scholar
  29. 29.
    Grohmann U, Belladonna ML, Vacca C, et al.: Positive Regulatory role of IL-12 in Macrophages and Modulation by IFN-gamma. J Immunol 167(1):221-227, 2001Google Scholar
  30. 30.
    Chua AO, Chizzonite R, Desai BB, et al.: Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. J Immunol 153(1):128-136, 1994Google Scholar
  31. 31.
    Chua AO, Wilkinson VL, Presky DH, Gubler U: Cloning and characterization of a mouse IL-12 receptor-beta component. J Immunol 155(9):4286-4294, 1995Google Scholar
  32. 32.
    Presky DH, Yang H, Minetti LJ, et al.: A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci USA 93(24):14002-14007, 1996Google Scholar
  33. 33.
    Esche C, Shurin MR, Lotze MT: IL-12 Receptor. In Cytokine Reference, JJ., Oppenheim, M Feldmann (Eds.). San Diego, Academic Press, 2000, pp. 1503-1509Google Scholar
  34. 34.
    Szabo SJ, Dighe AS, Gubler U, Murphy KM: Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 185(5):817-824, 1997Google Scholar
  35. 35.
    Rogge L, Barberis-Maino L, Biffi M, et al.: Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185(5):825-831, 1997Google Scholar
  36. 36.
    Rogge L, Papi A, Presky DH, et al.: Antibodies to the IL-12 receptor beta 2 chain mark human Th1 but not Th2 cells in vitro and in vivo. J Immunol 162(7):3926-3932, 1999Google Scholar
  37. 37.
    Sinigaglia F, D'Ambrosio D, Panina-Bordignon P, Rogge L: Regulation of the IL-12/IL-12R axis: A critical step in T-helper cell differentiation and effector function. Immunol Rev 170:65-72, 1999Google Scholar
  38. 38.
    Wu C, Ferrante J, Gately MK, Magram J: Characterization of IL-12 receptor beta1 chain (IL-12Rbeta1)-deficient mice: IL-12Rbeta1 is an essential component of the functional mouse IL-12 receptor. J Immunol 159(4):1658-1665, 1997Google Scholar
  39. 39.
    Wu C, Wang X, Gadina M, O'Shea JJ, Presky DH, Magram J: IL-12 receptor beta 2 (IL-12R beta 2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites. J Immunol 165(11):6221-6228, 2000Google Scholar
  40. 40.
    Magram J, Connaughton SE, Warrier RR, et al.: IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 4(5):471-481, 1996Google Scholar
  41. 41.
    Mattner F, Magram J, Ferrante J, et al.: Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol 26(7):1553-1559, 1996Google Scholar
  42. 42.
    Rogge L, D'Ambrosio D, Biffi M, et al.: The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J Immunol 161(12):6567-6574, 1998Google Scholar
  43. 43.
    Nguyen KB, Watford WT, Salomon R, et al.: Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 297(5589):2063-2066, 2002Google Scholar
  44. 44.
    Zhang Y, Apilado R, Coleman J, et al.: Interferon gamma stabilizes the T helper cell type 1 phenotype. J Exp Med 194(2):165-172, 2001Google Scholar
  45. 45.
    Lighvani AA, Frucht DM, Jankovic D, et al.: T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci USA 98(26):15137-15142, 2001Google Scholar
  46. 46.
    Afkarian M, Sedy JR, Yang J, et al.: T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 3(6):549-557, 2002Google Scholar
  47. 47.
    Szabo SJ, Sullivan BM, Peng SL, Glimcher LH: Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 6:6, 2002Google Scholar
  48. 48.
    Bacon CM, McVicar DW, Ortaldo JR, Rees RC, O'Shea JJ, Johnston JA: Interleukin 12 (IL-12) induces tyrosine phosphorylation of JAK2 and TYK2: Differential use of Janus family tyrosine kinases by IL-2 and IL-12. J Exp Med 181(1):399-404, 1995Google Scholar
  49. 49.
    Zou J, Presky DH, Wu CY, Gubler U: Differential associations between the cytoplasmic regions of the interleukin-12 receptor subunits beta1 and beta2 and JAK kinases. J Biol Chem 272(9):6073-6077, 1997Google Scholar
  50. 50.
    Shimoda K, Tsutsui H, Aoki K, Kato K, Matsuda T, Numata A, et al.: Partial impairment of interleukin-12 (IL-12) and IL-18 signaling in Tyk2-deficient mice. Blood 99(6):2094-2099, 2002Google Scholar
  51. 51.
    Karaghiosoff M, Neubauer H, Lassnig C, et al.: Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13(4):549-560, 2000Google Scholar
  52. 52.
    Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93(3):397-409, 1998Google Scholar
  53. 53.
    Parganas E, Wang D, Stravopodis D, et al.: Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93(3):385-395, 1998Google Scholar
  54. 54.
    Nishikomori R, Usui T, Wu CY, Morinobu A, O'Shea JJ, Strober W: Activated STAT4 has an essential role in Th1 differentiation and proliferation that is independent of its role in the maintenance of IL-12R beta 2 chain expression and signaling. J Immunol 169(8):4388-4398, 2002Google Scholar
  55. 55.
    Matsui E, Kaneko H, Teramoto T, et al.: Reduced IFNgamma production in response to IL-12 stimulation and/or reduced IL-12 production in atopic patients. Clin Exp Allergy 30(9):1250-1256, 2000Google Scholar
  56. 56.
    Kondo N, Matsui E, Kaneko H, et al.: Atopy and mutations of IL-12 receptor beta 2 chain gene. Clin Exp Allergy 31(8):1189-1193, 2001Google Scholar
  57. 57.
    Gollob JA, Schnipper CP, Murphy EA, Ritz J, Frank DA: The functional synergy between IL-12 and IL-2 involves p38 mitogen-activated protein kinase and is associated with the augmentation of STAT serine phosphorylation. J Immunol 162(8):4472-4481, 1999Google Scholar
  58. 58.
    Zhang S, Kaplan MH: The p38 mitogen-activated protein kinase is required for IL-12-induced IFN-gamma expression. J Immunol 165(3):1374-1380, 2000Google Scholar
  59. 59.
    Visconti R, Gadina M, Chiariello M, et al.: Importance of the MKK6/p38 pathway for interleukin-12-induced STAT4 serine phosphorylation and transcriptional activity. Blood 96(5):1844-1852, 2000Google Scholar
  60. 60.
    Morinobu A, Gadina M, Strober W, et al.: STAT4 serine phosphorylation is critical for IL-12-induced IFN-gamma production but not for cell proliferation. Proc Natl Acad Sci USA 99(19):12281-12226, 2002Google Scholar
  61. 61.
    Bacon CM, Petricoin EF, 3rd, Ortaldo JR, Rees RC, Larner AC, Johnston JA, et al.: Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc Natl Acad Sci USA 92(16):7307-7311, 1995Google Scholar
  62. 62.
    Jacobson NG, Szabo SJ, Weber-Nordt RM, et al.: Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J Exp Med 181(5):1755-1762, 1995Google Scholar
  63. 63.
    Kaplan MH, Sun YL, Hoey T, Grusby MJ: Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382(6587):174-177, 1996Google Scholar
  64. 64.
    Thierfelder WE, van Deursen JM, Yamamoto K, et al.: Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382(6587):171-174, 1996Google Scholar
  65. 65.
    Wurster AL, Tanaka T, Grusby MJ: The biology of Stat4 and Stat6. Oncogene 19(21):2577-2584, 2000Google Scholar
  66. 66.
    Nakahira M, Tomura M, Iwasaki M, et al.: An absolute requirement for STAT4 and a role for IFN-gamma as an amplifying factor in IL-12 induction of the functional IL-18 receptor complex. J Immunol 167(3):1306-1312, 2001Google Scholar
  67. 67.
    Iwasaki M, Mukai T, Nakajima C, et al.: A mandatory role for STAT4 in IL-12 induction of mouse T cell CCR5. J Immunol 167(12):6877-6883, 2001Google Scholar
  68. 68.
    Lim YC, Xie H, Come CE, et al.: IL-12, STAT4-dependent up-regulation of CD4(+) T cell core 2 beta-1,6-n-acetylglucosaminyltransferase, an enzyme essential for biosynthesis of P-selectin ligands. J Immunol 167(8):4476-4484, 2001Google Scholar
  69. 69.
    White SJ, Underhill GH, Kaplan MH, Kansas GS. Cutting edge: Differential requirements for Stat4 in expression of glycosyltransferases responsible for selectin ligand formation in Th1 cells. J Immunol 167(2):628-631, 2001Google Scholar
  70. 70.
    Nishikomori R, Ehrhardt RO, Strober W: T helper type 2 cell differentiation occurs in the presence of interleukin 12 receptor beta2 chain expression and signaling. J Exp Med 191(5):847-858, 2000Google Scholar
  71. 71.
    Nishikomori R, Gurunathan S, Nishikomori K, Strober W: BALB/c mice bearing a transgenic IL-12 receptor beta 2 gene exhibit a nonhealing phenotype to Leishmania major infection despite intact IL-12 signaling. J Immunol 166(11):6776-6783, 2001Google Scholar
  72. 72.
    Broxmeyer HE, Bruns HA, Zhang S, et al.: Th1 cells regulate hematopoietic progenitor cell homeostasis by production of oncostatin M. Immunity 16(6):815-825, 2002Google Scholar
  73. 73.
    Xu X, Sun YL, Hoey T: Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273(5276):794-797, 1996Google Scholar
  74. 74.
    Nakahira M, Ahn HJ, Park WR, Gao P, Tomura M, Park CS, et al.: Synergy of IL-12 and IL-18 for IFN-gamma gene expression: IL-12-induced STAT4 contributes to IFN-gamma promoter activation by up-regulating the binding activity of IL-18-induced activator protein 1. J Immunol 168(3):1146-1153, 2002Google Scholar
  75. 75.
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH: A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655-669, 2000Google Scholar
  76. 76.
    Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH: Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295(5553):338-342, 2002Google Scholar
  77. 77.
    Finotto S, Neurath MF, Glickman JN, et al.: Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295(5553):336-338, 2002Google Scholar
  78. 78.
    Mullen AC, Hutchins AS, High FA, et al.: Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat Immunol 3(7):652-658, 2002Google Scholar
  79. 79.
    Agarwal S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9(6):765-775, 1998Google Scholar
  80. 80.
    Hardy KJ, Manger B, Newton M, Stobo JD: Molecular events involved in regulating human interferon-gamma gene expression during T cell activation. J Immunol 138(7):2353-2358, 1987Google Scholar
  81. 81.
    Soutto M, Zhou W, Aune TM; Cutting edge: Distal regulatory elements are required to achieve selective expression of IFN-gamma in Th1/Tc1 effector cells. J Immunol 169(12):6664-6667, 2002Google Scholar
  82. 82.
    Mullen AC, High FA, Hutchins AS, et al.: Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292(5523):1907-1910, 2001Google Scholar
  83. 83.
    Avni O, Lee D, Macian F, Szabo SJ, Glimcher LH, Rao A. T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol 3(7):643-651, 2002Google Scholar
  84. 84.
    Fields PE, Kim ST, Flavell RA: Cutting edge: Changes in histone acetylation at the IL-4 and IFN-gamma loci accompany Th1/Th2 differentiation. J Immunol 169(2):647-650, 2002Google Scholar
  85. 85.
    Lee DU, Agarwal S, Rao A: Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16(5):649-660, 2002Google Scholar
  86. 86.
    Lee PP, Fitzpatrick DR, Beard C, et al.: A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15(5):763-774, 2001Google Scholar
  87. 87.
    Hutchins AS, Mullen AC, Lee HW, et al.: Gene silencing quantitatively controls the function of a developmental trans-activator. Mol Cell 10(1):81-91, 2002Google Scholar
  88. 88.
    Oppmann B, Lesley R, Blom B, et al.: Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13(5):715-725, 2000Google Scholar
  89. 89.
    Belladonna ML, Renauld JC, Bianchi R, et al.: IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol 168(11):5448-5454, 2002Google Scholar
  90. 90.
    Parham C, Chirica M, Timans J, et al.: A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168(11):5699-5708, 2002Google Scholar
  91. 91.
    Decken K, Kohler G, Palmer-Lehmann K, et al.: Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun 66(10):4994-5000, 1998Google Scholar
  92. 92.
    Piccotti JR, Li K, Chan SY, et al.: Alloantigen-reactive Th1 development in IL-12-deficient mice. J Immunol 160(3):1132-1138, 1998Google Scholar
  93. 93.
    Camoglio L, Juffermans NP, Peppelenbosch M, et al.: Contrasting roles of IL-12p40 and IL-12p35 in the development of hapten-induced colitis. Eur J Immunol 32(1):261-269, 2002Google Scholar
  94. 94.
    Frucht DM: IL-23: A cytokine that acts on memory T cells. Sci STKE 2002(114):PE1, 2002Google Scholar
  95. 95.
    Gran B, Zhang GX, Yu S, et al.: IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: Evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 169(12):7104-7110, 2002Google Scholar
  96. 96.
    de Jong R, Altare F, Haagen IA, et al.: Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280(5368):1435-1438, 1998Google Scholar
  97. 97.
    Doffinger R, Dupuis S, Picard C, Fieschi C, et al.: Inherited disorders of IL-12-and IFNgamma-mediated immunity: A molecular genetics update. Mol Immunol 38(12–13):903-909, 2002Google Scholar
  98. 98.
    Becher B, Durell BG, Noelle RJ: Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 110(4):493-497, 2002Google Scholar
  99. 99.
    Pflanz S, Timans JC, Cheung J, et al.: IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 16(6):779-790, 2002Google Scholar
  100. 100.
    Devergne O, Hummel M, Koeppen H, et al.: A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes. J Virol 70(2):1143-1153, 1996Google Scholar
  101. 101.
    Devergne O, Birkenbach M, Kieff E: Epstein-Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc Natl Acad Sci USA 94(22):12041-12046, 1997Google Scholar
  102. 102.
    Yoshida H, Hamano S, Senaldi G, et al.: WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity 15(4):569-578, 2001Google Scholar
  103. 103.
    Chen Q, Ghilardi N, Wang H, et al.: Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature 407(6806):916-920, 2000Google Scholar
  104. 104.
    Shinkai K, Mohrs M, Locksley RM: Helper T cells regulate type-2 innate immunity in vivo. Nature 420(6917):825-829, 2002Google Scholar
  105. 105.
    Liu YJ, Kanzler H, Soumelis V, Gilliet M: Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2(7):585-589, 2001Google Scholar
  106. 106.
    Soumelis V, Reche PA, Kanzler H, et al.: Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3(7):673-680, 2002Google Scholar
  107. 107.
    Leonard WJ. TSLP: Finally in the limelight. Nat Immunol 3(7):605-607, 2002Google Scholar
  108. 108.
    Schaeffer EM, Yap GS, Lewis CM, et al.: Mutation of Tec family kinases alters T helper cell differentiation. Nat Immunol 2(12):1183-1188, 2001Google Scholar
  109. 109.
    Wu C, Nguyen KB, Pien GC, et al.: SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nat Immunol 2(5):410-414, 2001Google Scholar
  110. 110.
    Rodriguez-Palmero M, Hara T, Thumbs A, Hunig T: Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur J Immunol 29(12):3914-3924, 1999Google Scholar
  111. 111.
    Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A: A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2(1):45-50, 2001Google Scholar
  112. 112.
    Wills-Karp M: Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 17:255-281, 1999Google Scholar
  113. 113.
    Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE: The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701-738, 1999Google Scholar
  114. 114.
    Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE: Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J Immunol 166(12):7276-7281, 2001Google Scholar
  115. 115.
    Jankovic D, Kullberg MC, Noben-Trauth N, Caspar P, Paul WE, Sher A: Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a Th2 cytokine profile. J Immunol 164(6):3047-3055, 2000Google Scholar
  116. 116.
    Parrish-Novak J, Dillon SR, Nelson A, et al.: Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408(6808):57-63, 2000Google Scholar
  117. 117.
    Kasaian MT, Whitters MJ, Carter LL, et al.: IL-21 limits NK cell responses and promotes antigen-specific T cell activation: A mediator of the transition from innate to adaptive immunity. Immunity 16(4):559-569, 2002Google Scholar
  118. 118.
    Ozaki K, Kikly K, Michalovich D, Young PR, Leonard WJ: Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci USA 97(21):11439-111444, 2000Google Scholar
  119. 119.
    Asao H, Okuyama C, Kumaki S, et al.: Cutting edge: The common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167(1):1-5, 2001Google Scholar
  120. 120.
    Wurster AL, Rodgers VL, Satoskar AR, et al.: Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. J Exp Med 196(7):969-977, 2002Google Scholar
  121. 121.
    Strengell M, Sareneva T, Foster D, Julkunen I, Matikainen S. IL-21 up-regulates the expression of genes associated with innate immunity and Th1 response. J Immunol 169(7):3600-3605, 2002Google Scholar
  122. 122.
    Suto A, Nakajima H, Hirose K, et al.: Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line Cepsilon transcription of IL-4-stimulated B cells. Blood 100(13):4565-4573, 2002Google Scholar
  123. 123.
    Ozaki K, Spolski R, Feng CG, et al.: A critical role for IL-21 in regulating immunoglobulin production. Science 298(5598):1630-1634, 2002Google Scholar
  124. 124.
    Kurata H, Lee HJ, O'Garra A, Arai N: Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 11(6):677-688, 1999Google Scholar
  125. 125.
    Akimoto T, Numata F, Tamura M, et al.: Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med 187(9):1537-1542, 1998Google Scholar
  126. 126.
    Kuperman D, Schofield B, Wills-Karp M, Grusby MJ: Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med 187(6):939-948, 1998Google Scholar
  127. 127.
    Mathew A, MacLean JA, DeHaan E, Tager AM, Green FH, Luster AD: Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J Exp Med 193(9):1087-1096, 2001Google Scholar
  128. 128.
    Kaplan MH, Daniel C, Schindler U, Grusby MJ: Stat proteins control lymphocyte proliferation by regulating p27Kip1 expression. Mol Cell Biol 18(4):1996-2003, 1998Google Scholar
  129. 129.
    Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM: Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276(5312):589-592, 1997Google Scholar
  130. 130.
    Dent AL, Hu-Li J, Paul WE, Staudt LM: T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6. Proc Natl Acad Sci USA 95(23):13823-13828, 1998Google Scholar
  131. 131.
    Ouyang W, Ranganath SH, Weindel K, et al.: Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9(5):745-755, 1998Google Scholar
  132. 132.
    Ho IC, Vorhees P, Marin N, et al.: Human GATA-3: A lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J 10(5):1187-1192, 1991Google Scholar
  133. 133.
    Ko LJ, Yamamoto M, Leonard MW, George KM, Ting P, Engel JD: Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol Cell Biol 11(5):2778-2784, 1991Google Scholar
  134. 134.
    Joulin V, Bories D, Eleouet JF, et al.: A T-cell specific TCR delta DNA binding protein is a member of the human GATA family. EMBO J 10(7):1809-1816, 1991Google Scholar
  135. 135.
    Henderson AJ, McDougall S, Leiden J, Calame KL: GATA elements are necessary for the activity and tissue specificity of the T-cell receptor beta-chain transcriptional enhancer. Mol Cell Biol 14(6):4286-4294, 1994Google Scholar
  136. 136.
    Zheng W, Flavell RA: The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89(4):587-596, 1997Google Scholar
  137. 137.
    Zhang DH, Cohn L, Ray P, Bottomly K, Ray A: Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 272(34):21597-21603, 1997Google Scholar
  138. 138.
    Lee HJ, O'Garra A, Arai K, Arai N: Characterization of cis-regulatory elements and nuclear factors conferring Th2-specific expression of the IL-5 gene: a role for a GATA-binding protein. J Immunol 160(5):2343-2352, 1998Google Scholar
  139. 139.
    Ferber IA, Lee HJ, Zonin F, et al.: GATA-3 significantly downregulates IFN-gamma production from developing Th1 cells in addition to inducing IL-4 and IL-5 levels. Clin Immunol 91(2):134-144, 1999Google Scholar
  140. 140.
    Lee HJ, Takemoto N, Kurata H, et al.: GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 192(1):105-115, 2000Google Scholar
  141. 141.
    Ouyang W, Lohning M, Gao Z, et al.: Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12(1):27-37, 2000Google Scholar
  142. 142.
    Farrar JD, Ouyang W, Lohning M, Assenmacher M, Radbruch A, Kanagawa O, et al.: An instructive component in T helper cell type 2 (Th2) development mediated by GATA-3. J Exp Med 193(5):643-650, 2001Google Scholar
  143. 143.
    Ranganath S, Murphy KM: Structure and specificity of GATA proteins in Th2 development. Mol Cell Biol 21(8):2716-2725, 2001Google Scholar
  144. 144.
    Kimura M, Koseki Y, Yamashita M, et al.: Regulation of Th2 cell differentiation by mel-18, a mammalian polycomb group gene. Immunity 15(2):275-287, 2001Google Scholar
  145. 145.
    Hwang ES, Choi A, Ho IC: Transcriptional regulation of GATA-3 by an intronic regulatory region and fetal liver zinc finger protein 1. J Immunol 169(1):248-253, 2002Google Scholar
  146. 146.
    Zhou M, Ouyang W, Gong Q, et al.: Friend of GATA-1 represses GATA-3-dependent activity in CD4+ T cells. J Exp Med 194(10):1461-1471, 2001Google Scholar
  147. 147.
    Kurata H, Lee HJ, McClanahan T, Coffman RL, O'Garra A, Arai N: Friend of GATA is expressed in naive Th cells and functions as a repressor of GATA-3-mediated Th2 cell development. J Immunol 168(9):4538-4545, 2002Google Scholar
  148. 148.
    Miaw SC, Choi A, Yu E, Kishikawa H, Ho IC: ROG, repressor of GATA, regulates the expression of cytokine genes. Immunity 12(3):323-333, 2000Google Scholar
  149. 149.
    Nakamura Y, Ghaffar O, Olivenstein R, Taha RA, Soussi-Gounni A, Zhang DH, et al.: Gene expression of the GATA-3 transcription factor is increased in atopic asthma. J Allergy Clin Immunol 103(2, Pt 1):215-222, 1999Google Scholar
  150. 150.
    Zhang DH, Yang L, Cohn L, et al.: Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 11(4):473-482, 1999Google Scholar
  151. 151.
    Finotto S, De Sanctis GT, Lehr HA, et al.: Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med 193(11):1247-1260, 2001Google Scholar
  152. 152.
    Pandolfi PP, Roth ME, Karis A, et al.: Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11(1):40-44, 1995Google Scholar
  153. 153.
    George KM, Leonard MW, Roth ME, et al.: Embryonic expression and cloning of the murine GATA-3 gene. Development 120(9):2673-2686, 1994Google Scholar
  154. 154.
    Ting CN, Olson MC, Barton KP, Leiden JM: Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384(6608):474-478, 1996Google Scholar
  155. 155.
    Hendriks RW, Nawijn MC, Engel JD, van Doorninck H, Grosveld F, Karis A: Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur J Immunol 29(6):1912-1918, 1999Google Scholar
  156. 156.
    Kishikawa H, Sun J, Choi A, Miaw SC, Ho IC: The cell type-specific expression of the murine IL-13 gene is regulated by GATA-3. J Immunol 167(8):4414-4420, 2001Google Scholar
  157. 157.
    Zhang DH, Yang L, Ray A: Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J Immunol 161(8):3817-3821, 1998Google Scholar
  158. 158.
    Ranganath S, Ouyang W, Bhattarcharya D, et al.: GATA-3-dependent enhancer activity in IL-4 gene regulation. J Immunol 161(8):3822-3826, 1998Google Scholar
  159. 159.
    Wenner CA, Szabo SJ, Murphy KM: Identification of IL-4 promoter elements conferring Th2-restricted expression during T helper cell subset development. J Immunol 158(2):765-773, 1997Google Scholar
  160. 160.
    Lee GR, Fields PE, Flavell RA: Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14(4):447-459, 2001Google Scholar
  161. 161.
    Solymar DC, Agarwal S, Bassing CH, Alt FW, Rao A: A 3' enhancer in the IL-4 gene regulates cytokine production by Th2 cells and mast cells. Immunity 17(1):41-50, 2002Google Scholar
  162. 162.
    Agarwal S, Avni O, Rao A: Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12(6):643-652, 2000Google Scholar
  163. 163.
    Takemoto N, Koyano-Nakagawa N, Yokota T, Arai N, Miyatake S, Arai K: Th2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region. Int Immunol 10(12):1981-1985, 1998Google Scholar
  164. 164.
    Loots GG, Locksley RM, Blankespoor CM, et al.: Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288(5463):136-140, 2000Google Scholar
  165. 165.
    Mohrs M, Blankespoor CM, Wang ZE, et al.: Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nat Immunol 2(9):842-847, 2001Google Scholar
  166. 166.
    Takemoto N, Kamogawa Y, Jun Lee H, et al.: Cutting edge: Chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for Th2-specific cytokine gene cluster. J Immunol 165(12):6687-6691, 2000Google Scholar
  167. 167.
    Ho IC, Hodge MR, Rooney JW, Glimcher LH: The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85(7):973-983, 1996Google Scholar
  168. 168.
    Blank V, Andrews NC: The Maf transcription factors: Regulators of differentiation. Trends Biochem Sci 22(11):437-441, 1997Google Scholar
  169. 169.
    Kim JI, Ho IC, Grusby MJ, Glimcher LH: The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10(6):745-751, 1999Google Scholar
  170. 170.
    Ho IC, Lo D, Glimcher LH: c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and-independent mechanisms. J Exp Med 188(10):1859-1866, 1998Google Scholar
  171. 171.
    Rengarajan J, Tang B, Glimcher LH: NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naive T(H)cells. Nat Immunol 3(1):48-54, 2002Google Scholar
  172. 172.
    Rengarajan J, Mowen KA, McBride KD, Smith ED, Singh H, Glimcher LH: Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J Exp Med 195(8):1003-1012, 2002Google Scholar
  173. 173.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce D, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawaki S, Wiekowski M, Lira SA, Corman D, Kactelein RA, Sedgwick JD: Interleukin-23 rather than interleukin-12 is the critical cytokine for autosmmune inflamation of the brain. Nature 13:421(6924):744-748, 2003Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Davide Agnello
    • 1
  • Carla S. R. Lankford
    • 2
  • Jay Bream
    • 1
  • Akio Morinobu
    • 1
  • Massimo Gadina
    • 3
  • John J. O'Shea
    • 1
  • David M. Frucht
    • 2
  1. 1.Molecular Immunology and Inflammation BranchNational Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Building 10, Room 9N262Bethesda
  2. 2.Division of Monoclonal AntibodiesCenter for Biologics Evaluation and Research, Food and Drug AdministrationBethesda
  3. 3.Department of Microbiology and ImmunologyQueen's UniversityBelfast, Northern IrelandUK

Personalised recommendations