Studia Geophysica et Geodaetica

, Volume 42, Issue 3, pp 224–231

The Karlsruhe Dynamo Experiment. A Mean Field Approach

  • K.-H. Rädler
  • E. Apstein
  • M. Rheinhardt
  • M. Schüler
Article

Abstract

At the Forschungszentrum Karlsruhe an experiment is in preparation which it is hoped, in view of the geodynamo and other cosmic dynamos, that a homogeneous dynamo will be demonstrated and investigated. This experiment is discussed within the framework of mean-field dynamo theory. Results are presented concerning kinematic cylindrical mean-field dynamo models reflecting some features of the experimental device, as well as results of detailed calculations of the α-effect that apply to arbitrarily high magnetic Reynolds numbers. On this basis estimates of the excitation conditions of the dynamo are given and predictions concerning the geometrical structure of the generated magnetic fields are made.

dynamo geodynamo dynamo experiment mean-field dynamo theory α-effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Busse, F.H., 1975: A model of the geodynamo. Geophys. J. R. Astr. Soc. 42, 437–459.Google Scholar
  2. Busse, F.H., 1992: Dynamo theory of planetary magnetism and laboratory experiments. In R. Friedrich and A. Wunderlin, Evolution of Dynamical Structures in Complex Systems, Springer-Progress in Physics, Vol. 69, pp. 197–207.Google Scholar
  3. Dobler, W., and Rädler, K.-H., 1998a: An integral equation approach to kinematic dynamo models. Submitted to Geophys. Astrophys. Fluid Dynamics.Google Scholar
  4. Dobler, W., and Rädler, K.-H., 1998b: Integral equations for kinematic dynamo models. This volume.Google Scholar
  5. Fuchs, H., Rädler, K.-H. and Schüler, M., 1993: A numerical approach to dynamically consistent spherical dynamo models. In F. Krause, K.-H. Rädler and G. Rüdiger, The Cosmic Dynamo, Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 129–133.Google Scholar
  6. Krause, F. and Rädler, K.-H., 1980: Mean-field Magnetohydrodynamics and Dynamo Theory, Akademie-Verlag, Berlin, and Pergamon Press, Oxford.Google Scholar
  7. Rädler, K.-H., Apel, A., Apstein, E., and Rheinhardt, M., 1996: Contributions to the theory of the planned Karlsruhe dynamo experiment. Report AIP 1996.Google Scholar
  8. Rädler, K.-H., Apstein, E., Rheinhardt, M., and Schüler, M., 1997a: Contributions to the theory of the planned Karlsruhe dynamo experiment — Supplements and Corrigenda. Report AIP 1997.Google Scholar
  9. Rädler, K.-H., Apstein, E. and Schüler, M., 1997b: The α-effect in the Karlsruhe dynamo experiment. Proceedings of the International Conference ”Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows”, Aussois/France, Vol. 1, pp. 9–14.Google Scholar
  10. Roberts, G. O., 1972: Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. Roy. Soc. London, A 271, 411–454.Google Scholar
  11. Stieglitz, R., and Müller, U., 1996: Geodynamo — Eine Versuchsanlage zum Nachweis des homogenen Dynamoeffektes. Wissenschaftliche Berichte Forschungszentrum Karlsruhe FZKA 5716.Google Scholar
  12. Tilgner, A., 1997a: Predictions on the behaviour of the Karlsruhe dynamo. In J. Brestenský and S. Ševčik, Stellar and Planetary Magnetoconvection, Special Issue of Acta Astronomica et Geophysica Universitatis Comenianae, 19, pp. 51–62.Google Scholar
  13. Tilgner, A., 1997b: A kinematic dynamo with small scale velocity field. Physics Letters A226, 75–79.Google Scholar

Copyright information

© StudiaGeo s.r.o. 1998

Authors and Affiliations

  • K.-H. Rädler
    • 1
  • E. Apstein
    • 1
  • M. Rheinhardt
    • 1
  • M. Schüler
    • 1
  1. 1.Astrophysikalisches InstitutPotsdamGermany.

Personalised recommendations