Advertisement

Neumann–Lame–Clapeyron–Stefan Problem and Its Solution Using Fractional Differential-Integral Calculus

  • L. P. Kholpanov
  • S. E. Zakiev
  • V. A. Fedotov
Article

Abstract

A method is proposed to solve boundary-value problems for parabolic equations with unknown boundaries (where the solutions join) moving according to time-dependent laws. This method is based on fractional differential-integral calculus. An integral relation between the temperature and velocity of the moving interface is put forward. Necessary examples are given.

Keywords

Parabolic Equation Stefan Problem Integral Relation Unknown Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stefan, J., Ñber einige Probleme der Theorie der Wärmeleitung, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. IIa, 1889, vol. 96, p. 473.Google Scholar
  2. 2.
    Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Clarendon, 1986. Translated under the title Teploprovodnost' tverdykh tel, Moscow: Nauka, 1986.Google Scholar
  3. 3.
    Lame, G. and Clapeyron, B.P., Memoire sur la solidification par refroidissement d'un globe liquide, Ann. Chim. Phis., 1831, vol. 47, p. 250.Google Scholar
  4. 4.
    Rubinshtein, L.I., On Some Nonlinear Problems Generated by the Fourier Equation, Doctoral (Phys.‐Math.) Dissertation, Moscow: Moscow State Univ., 1954.Google Scholar
  5. 5.
    Kolodner, I., Boundary-Value Problems with Unknown Boundaries for the Heat Equation with Applications to Phase-Transition Problems, Mekhanika: Sb. Perevodov, 1957, no. 1(41), p. 39.Google Scholar
  6. 6.
    Melamed, V.G., Solution of the Stefan Problem by Reduction to a Set of Ordinary Differential Equation, Cand. Sci. (Phys.‐Math.) Dissertation, Moscow: Moscow State Univ., 1957.Google Scholar
  7. 7.
    Oleinik, O.A., On a Method for Solving the General Stefan Problem, Dokl. Akad. Nauk SSSR, 1960, vol. 135, no. 5, p. 1054.Google Scholar
  8. 8.
    Kamenomostskaya, S.L., Some Problems for Parabolic Equations with Unknown Boundaries, Cand. Sci. (Phys.‐Math.) Dissertation, Moscow: Moscow State Univ., 1958.Google Scholar
  9. 9.
    Portnov, I.G., Exact Solution of the Isomerization Problem under Arbitrary Change in the Temperature at the Immobile Interface, Dokl. Akad. Nauk SSSR, 1962, vol.?143, no. 3, p. 559.Google Scholar
  10. 10.
    Portnov, I.G., On a Method for Solving Some Boundary-Value Problems with Unknown Boundaries, Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., 1962, no. 3, p. 67.Google Scholar
  11. 11.
    Henry, D.B., Geometric Theory of Semilinear Parabolic Equations, Berlin: Springer, 1981. Translated under the title Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Moscow: Mir, 1985.Google Scholar
  12. 12.
    Babenko, Yu.I., Teplomassoobmen: Metod rascheta teplovykh i diffuzionnykh potokov (Heat and Mass Transfer: A Method for Calculation of Heat and Diffusion Fluxes), Leningrad: Khimiya, 1986.Google Scholar
  13. 13.
    Samko, S.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Fractional Integrals and Derivatives and Some of Its Applications), Minsk: Nauka i Tekhnika, 1987.Google Scholar
  14. 14.
    Mainardi, F., Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics, Fractals and Fractional Calculus in Continuum Mechanics Vienna: Springer, 1997, p. 291.Google Scholar
  15. 15.
    Kholpanov, L.P., Self-Organization and Dynamic Chaos: Issues and Problems, Sovremennye problemy aerogidromekhaniki (Modern Aspects of Aerohydromechanics), Moscow: Inst. Prikl. Mekh., Ross. Akad. Nauk, 1999, vol. 1, p. 53.Google Scholar
  16. 16.
    Bocharov, A.V., Verbovetskii, A.M., and Vinogradov, A.M., Simmetriya i zakony sokhraneniya uravnenii matematicheskoi fiziki (Symmetry and Conservation Laws of Equations of Mathematical Physics), Moscow: Faktorial, 1997.Google Scholar
  17. 17.
    Merzhanov, A.G., History of and New Developments in SHS, Ceram. Trans., 1995, vol. 56, p. 3.Google Scholar
  18. 18.
    Ditkin, V.A. and Prudnikov, A.P., Operatsionnoe ischislenie (Operational Calculus), Moscow: Vysshaya Shkola, 1966, p. 206.Google Scholar
  19. 19.
    Merzhanov, A.G. and Khaikin, B.I., Theory of Combustion Waves in Homogeneous Media, Prog. Energy Combust. Sci., 1988, no. 14, p. 1.Google Scholar
  20. 20.
    Isichenko, M.B., Percolation, Statistical Topography, and Transport in Random Media, Rev. Modern Phys., 1992, vol. 64, no. 4, p. 961.Google Scholar
  21. 21.
    Oliveira, A.A.M. and Kaviany, M., Role of Inter-and Intraparticle Diffusion in Nonuniform Particle Size Gasless Compacted-Powder Combustion Synthesis, Int. J.?Heat Mass Transfer, 1999, vol. 42, p. 1059.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • L. P. Kholpanov
    • 1
  • S. E. Zakiev
    • 2
  • V. A. Fedotov
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Structural Macrokinetics and Problems of Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations