Biogeochemistry

, Volume 63, Issue 3, pp 229–247 | Cite as

Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany.

  • Jens Tilsner
  • Nicole Wrage
  • Jutta Lauf
  • Gerhard Gebauer
Article

Abstract

In a one-year field study (June 1998 to April 1999), we quantified N2O and NOx emissions from an extensively managed grassland in NE Bavaria (Germany) in unfertilized controls and after application of slurry or mineral N (calcium ammonium nitrate), respectively. Emissions were measured every 2–4 weeks, with additional daily measurements for 10 days after each fertilizer application. The closed chamber method was used for N2O and the open chamber method for NOx measurements. Fertilizer applications resulted in significantly increased N2O emission rates in comparison to the low annual mean of the control plots (1.4 μmol m−2 h−1). Episodical emission peaks during the summer were attributed to high microbial activity after rainfall. Mineral N fertilization resulted in the highest emission rates. Cumulative annual N2O emissions were 11.2 kg N ha−1 a−1 for the mineral N, 8.8 kg N ha−1 a−1 for the slurry and 3.4 kg N ha−1 a−1 for the control plots. This represents 10.5% (mineral N) and 7.2% (slurry) of the applied nitrogen. The fertilizer-induced N2O emission factors on this extensively managed grassland are high in comparison to emission factors on intensively managed grassland and substantially higher than the 1.5% estimate used by the global emission inventory. NOx emissions increased after the first fertilizer application in summer, but not after the two following fertilizations in fall and spring. Differences between treatments were not significant. Annual NOx emissions were 1.9 kg N ha−1 a−1 for both, mineral N and slurry plots and 1.5 kg N ha−1 a−1 for the controls, representing 0.5% of the N applied with each fertilizer. The ratio of emitted NOx to N2O was 1:4.7 for both fertilized treatments (based on N-atoms).

Emission Grassland Nitric oxide Nitrous oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amberger A. and Schmidt H.-L. 1987. Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft. Geochim. Cosmochim. Acta 51: 2699–2705.Google Scholar
  2. Bayer. Staatsministerium für Ernährung, Landwirtschaft und Forsten 1998. Bayerischer Agrarbericht 1998. Druckhaus Kastner, Wolnzach, Germany.Google Scholar
  3. Bergstrom D.W., Tenuta M. and Beauchamp E.G. 1994. Increase in nitrous oxide production in soil induced by ammonium and organic carbon. Biol. Fertil. Soils 18: 1–6.Google Scholar
  4. Bouwman A.F. 1990. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman A.F. (ed.), Soils and the Greenhouse Effect. John Wiley and Sons, Chichester, UK, pp. 61–127.Google Scholar
  5. Bremner J.M. and Keeney D.R. 1965. Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta 32: 485–495.Google Scholar
  6. Christensen S. 1983. Nitrous oxide emission from a soil under permanent grass: seasonal and diurnal fluctuations as influenced by manuring and fertilization. Soil Biol. Biochem. 15: 531–536.Google Scholar
  7. Christensen S. and Tiedje J.M. 1990. Brief and vigorous N2O production by soil at spring thaw. J. Soil Sci. 41: 1–4.Google Scholar
  8. Clayton H., Arah J.R.M. and Smith K.A. 1994. Measurements of nitrous oxide emissions from fertilized grassland using closed chambers. J. Geophys. Res. 99: 16599–16607.Google Scholar
  9. Crutzen P.J. 1981. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In: Delwiche C.C. (ed.), Denitrification, Nitrification and Atmospheric Nitrous Oxide. John Wiley and Sons, Chichester, UK, pp. 17–44.Google Scholar
  10. Davidson E.A. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers J.E. and Whitman W.B. (eds), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes. American Society for Microbiology, Washington, DC, USA, pp. 219–235.Google Scholar
  11. Davidson E.A. and Kingerlee W. 1997. A global inventory of nitric oxide emissions from soils. Nutr. Cycl. Agroecosyst. 48: 37–50.Google Scholar
  12. Durka W. 1994. Isotopenchemie des Nitrat, Nitrataustrag, Wasserchemie und Vegetation von Waldquellen im Fichtelgebirge (NO-Bayern). PhD Dissertation, University of Bayreuth. Bayreuther Forum Ökologie 11. BITÖK, Bayreuth, Germany.Google Scholar
  13. Durka W., Schulze E.-D., Gebauer G. and Voerkelius S. 1994. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372: 765–767.Google Scholar
  14. Eggington G.M. and Smith K.A. 1986. Nitrous oxide emissions from a grassland soil fertilized with slurry and calcium nitrate. J. Soil Sci. 37: 59–67.Google Scholar
  15. Ellenberg H. 1977. Stickstoff als Standortsfaktor, insbesondere für mitteleuropäische Pflanzengesellschaften. Oecol. Plant. 12: 1–22.Google Scholar
  16. Flessa H., Wild U., Klemisch M. and Pfadenhauer J. 1998. Nitrous oxide and methane fluxes from organic soils under agriculture. Europ. J. Soil Sci. 49: 327–335.Google Scholar
  17. Fowler D., Skiba U. and Hargreaves K.J. 1997. Emissions of nitrous oxide from grasslands. In: Jarvis S.C. and Pain B.F. (eds), Gaseous Nitrogen Emissions from Grasslands. CAB International, Oxon, UK, pp. 147–164.Google Scholar
  18. Gebauer G., Zeller B., Schmidt G., May C., Buchmann N., Colin-Belgrand M. et al. 2000. The fate of 15N-labelled nitrogen inputs to coniferous and broadleaf forests. In: Schulze (ed.), Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142, Springer-Verlag, Berlin-Heidelberg, Germany, pp. 144–170.Google Scholar
  19. Gerlach A. 1973. Methodische Untersuchungen zur Bestimmung der Stickstoffnettomineralisation. Scripta Geobotanica 5. Verlag Erich Goltze, Göttingen, Germany.Google Scholar
  20. Granli T. and Bøckman O.C. 1994. Nitrous oxide from agriculture. Norw. J. Agric. Sci Suppl. No. 12.Google Scholar
  21. Hansen S., Mæhlum J.E. and Bakken L.R. 1993. N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic. Soil Biol. Biochem 25: 621–630.Google Scholar
  22. Harrison A.F., Schulze E.-D., Gebauer G. and Bruckner G. 2000. Canopy uptake and utilization of atmospheric pollutant nitrogen. In: Schulze E.-D. (ed.), Carbon and Nitrogen Cycling in European Forest Ecosystems Ecological Studies 142. Springer-Verlag, Berlin-Heidelberg, Germany, pp. 171–188.Google Scholar
  23. Harrison R.M., Yamulki S., Goulding K.W.T. and Webster C.P. 1995. Effect of fertilizer application on NO and N2O fluxes from agricultural fields. J. Geophys. Res. 100: 25923–25931.Google Scholar
  24. Högberg P. 1997. 15N natural abundance in soil-plant systems. Tansley Review No. 95. New Phytol. 137: 179–203.Google Scholar
  25. IPCC - Intergovernmental Panel on Climate Change 1992. Climate change 1992 - the supplementary report to the IPCC scientific assessment. In: Houghton J.T., Callander B.A. and Varney S.K. (eds), Cambridge University Press, Cambridge, UK.Google Scholar
  26. IPCC - Intergovernmental Panel on Climate Change 1995. Climate change 1994. In: Houghton J.T., Meira Filho M.G., Bruce J., Hoesung Lee, Callander B.A., Haites E. et al. (eds), Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios. Cambridge University Press, Cambridge, UK.Google Scholar
  27. IPCC - Intergovernmental Panel on Climate Change 1996. Climate Change 1995. In: Houghton J.T., Meira Filho M.G., Callander B.A., Harris N., Kattenberg A. and Maskell K. (eds), The Science of Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  28. Kester R.A., Meijer M.E., Libochant J.A., de Boer W. and Laanbroek H.J. 1997. Contribution of nitri-fication and denitrification to the NO and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil. Soil Biol. Biochem. 29: 1655–1664.Google Scholar
  29. Knauer N. 1993. Ökologie und Landwirtschaft. Verlag Eugen Ulmer, Stuttgart.Google Scholar
  30. Mariotti A. 1983. Atmospheric nitrogen is a reliable standard for natural ?15N abundance measurements. Nature 303: 685–687.Google Scholar
  31. Mosier A.R., Kroeze C., Nevison C., Oenema O., Seitzinger S. and van Cleemput O. 1998. Closing the global atmospheric N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycl. Agroecosys. 52: 225–248.Google Scholar
  32. Nadelhoffer K.J. and Fry B. 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci. Soc. Am. J. 52: 1633–1640.Google Scholar
  33. Papen H. and Butterbach-Bahl K. 1999. A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. I. N2O emissions. J. Geophys. Res. 104: 18487–18503.Google Scholar
  34. Röver M., Heinemeyer O. and Kaiser E.-A. 1998. Microbial induced nitrous oxide emissions from an arable soil during winter. Soil Biol. Biochem. 30: 1859–1865.Google Scholar
  35. Ryden J.C. and Dawson K.P. 1982. Evaluation of the acetylene-inhibition technique for the measurement of denitrification in grassland soils. J. Sci. Food Agric. 33: 1197–1206.Google Scholar
  36. Salway A.G. 1995. UK greenhouse gas emission inventory, 1990–1993. AEA technology, annual report for the DOE, AEA/16419178/R/001.Google Scholar
  37. Scheffer F. and Schachtschabel P. 1998. Lehrbuch der Bodenkunde. 14th edn. Ferdinand Enke Verlag, Stuttgart, Germany, pp 274–275.Google Scholar
  38. Shepherd M.F., Barzetti S. and Hastie D. 1991. The production of atmospheric NOx and N2O from a fertilized soil. Atmos. Environ. 25A: 1961–1969.Google Scholar
  39. Skiba U., Hargreaves K.J., Fowler D. and Smith K.A. 1992. Fluxes of nitric and nitrous oxides from agricultural soils in a cool temperate climate. Atmos. Environ. 26A: 2477–2488.Google Scholar
  40. Skiba U., Smith K.A. and Fowler D. 1993. Nitrification and denitrification as sources of of nitric oxide in a sandy loam soil. Soil Biol. Biochem. 25: 1527–1536.Google Scholar
  41. Statistisches Bundesamt 1999. Basisdaten - Landwirtschaft und Fischerei. http://www.statistik-bund.de/ basis/d/forst/forsttab1.htm.Google Scholar
  42. Stevens R.J. and Laughlin R.J. 1997. The impact of cattle slurries and their management on ammonia and nitrous oxide emissions from grassland. In: Jarvis S.C. and Pain P.F. (eds), Gaseous Nitrogen Emissions from Grasslands. CAB International, Oxon, UK, pp. 233–256.Google Scholar
  43. Tilsner J.T., Wrage N., Lauf J. and Gebauer G. 2002. Emission of gaseous nitrogen oxides from an extensively managed grassland in Germany. II: Stable isotope natural abundance of N2O. Biogeochemistry (this issue).Google Scholar
  44. Velthof G.L. and Oenema O. 1995a. Nitrous oxide fluxes from grassland in the Netherlands: I. Statistical analyses of flux chamber measurements. Eur. J. Soil Sci. 46: 533–540.Google Scholar
  45. Velthof G.L. and Oenema O. 1995b. Nitrous oxide fluxes from grassland in the Netherlands: II. Effects of soil type, nitrogen fertilizer application and grazing. Eur. J. Soil Sci. 46: 541–549.Google Scholar
  46. Velthof G.L., Brader A.B. and Oenema O. 1996. Seasonal variations in nitrous oxide losses from managed grasslands in The Netherlands. Plant Soil 181: 263–274.Google Scholar
  47. Velthof G.L., van Groenigen J.W., Gebauer G., Pietrzak S., Jarvis S.C., Pinto M. et al. 2000. Temporal stability of spatial patterns of nitrous oxide fluxes from sloping grassland. J. Environ. Qual. 29: 1397–1407.Google Scholar
  48. Voerkelius S. 1990. Isotopendiskriminierungen bei der Nitrifikation und Denitrifikation; Grundlagen und Anwendungen der Herkunfts-Zuordnung von Nitrat und Distickstoffmonoxid. PhD Dissertation, Technical University of Munich, Germany.Google Scholar
  49. Yamulki S., Goulding K.W.T., Webster C.P. and Harrison R.M. 1995. Studies on NO and N2O fluxes from a wheat field. Atmos. Environ. 29: 1627–1635.Google Scholar
  50. Yamulki S., Harrison R.M., Goulding K.W.T. and Webster C.P. 1997. N2O, NO and NO2 fluxes from a grassland: Effect of soil pH. Soil Biol. Biochem. 29: 1199–1208.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jens Tilsner
  • Nicole Wrage
  • Jutta Lauf
  • Gerhard Gebauer

There are no affiliations available

Personalised recommendations