, Volume 63, Issue 1, pp 35–51 | Cite as

Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system

  • Mathieu Sebilo
  • Gilles Billen
  • Micheline Grably
  • André Mariotti


Nitrogen budgets established for large river systems reveal that up to 60% of the nitrate exported from agricultural soils is eliminated, either when crossing riparian wetlands areas before even reaching surface waters, or within the rivers themselves through benthic denitrification. The study of nitrogen isotope ratios of riverine nitrates could offer an elegant means to assess the extent of denitrification and thus confirm these budgets, as it is known that denitrification results in a natural 15N enrichment of residual nitrates. The results reported here, for the Seine river system (France), demonstrate the feasibility of this isotopic approach at the scale of large watersheds. On the basis of in situ observations carried out in a large storage reservoir in the upstream Seine catchment (Der Lake), where intensive benthic denitrification occurs, as well as on the basis of laboratory experiments of denitrification under controlled conditions, it is shown that the isotopic discrimination associated with benthic denitrification is minimal (ε of NO3-N ranging from −1.5 to −3.6‰), probably because the rate-limiting step of the process consists of nitrate diffusion through the water-sediment interface. Riparian denitrification on the contrary, when it implies nitrate reduction during convective transfer through reducing environements, causes a much more significant isotopic enrichment of 15N of residual nitrate (ε about −18‰). The authors report measurements of nitrogen isotopic composition of nitrate from rivers of various stream orders in the Seine river system under summer conditions. Anomalies in the data with respect to the values expected from the mixture of the various sources of nitrate are here attributed to riparian denitrification. However, the authors show that because of the patchy distribution of actively denitrifying riparian zones within the drainage network, the isotopic signature conferred to residual nitrate in river water intrinsically provides only a minimum estimate of the extent of denitrification.

15N natural abundance Denitrification Nitrate Riparian zones River systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen J.M. 1997. Rates of denitrification of undisturbed sediment from six lakes as a function of nitrate concentration, oxygen and temperature. Arch. Hydrobiol. 80: 147-159.Google Scholar
  2. Altman J. and Parizek R.R. 1995. Dilution of non-point source nitrate in ground water. J. Environ. Qual. 24: 707-718.Google Scholar
  3. Aravena R. and Robertson W.D. 1998. Use of multiple tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plume. Ground Water 36: 975-982.Google Scholar
  4. Battaglin W.A., Kendall C., Goolsby D.A. and Boyer L. 1998. Plan of study to determine if the isotopic ratios ?15N and ?18O can reveal the sources of nitrate discharged by the Mississipi River into the Gulf of Mexico. USGS open-File report 97-230.Google Scholar
  5. Behrendt H. and Opitz D. 1999. Retention of nutrients in river systems: dependence on specific runoff and hydraulic load. Hydrobiologia 410: 111-122.Google Scholar
  6. Billen G. and Garnier J. 1999. Nitrogen transfers through the Seine drainage network: a budget based on the application of the 'RIVERSTRAHLER' model. Hydrobiologia 410: 139-150.Google Scholar
  7. Böttcher J., Strebel O., Voerkelius S. and Schmidt H.L. 1990. Using isotope fractionnement of nitratenitrogen and nitrate-oxygen for evaluation of microbal denitrification in a sandy aquifer. Journal of hydrologie 114: 413-424.Google Scholar
  8. Brion N. and Billen G. 1998. Une réevaluation de la méthode de mesure de l'activité nitrifiante autotrophe par la méthode d'incorporation de bicarbonate marqué au 14C et son application pour estimer des biomasses de bactéries nitrifiantes. Rev. Int. Sci. De l'Eau 11: 283-302.Google Scholar
  9. Bremner J.M. and Keeney D.R. 1965. Steam distillation methods for determination of ammonium, nitrate, and nitrite. Anal. Chim. Acta. 32: 485-495.Google Scholar
  10. Cey E.E., Rudolph D.L., Aravena R. and Parkin R. 1999. Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. Journal of Contaminant Hydrology 37: 45-67.Google Scholar
  11. Christensen P.B., Nielsen L.P., Revsbech N.P. and Sorensen J. 1989. Microzonation of denitrification activity in stream sediments as studied with a combined oxygen and nitrous oxide microsensor. Appl. Environ. Microbiol. 55: 1234-1241.Google Scholar
  12. Devito K.J., Fitzgerald D., Hill A.R. and Aravena R. 2000. Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone. J. Environ. Qual. 29: 1075-1084.Google Scholar
  13. Dutriaux M.-C. 1980. Essai sur l'origine des nitrates dans les eaux souterraines: Application du traçage isotopique naturel de l'azote 15 à l'étude d'un périmètre de drainage en région cultivée (Beauce). Université Pierre et Marie Curie.Google Scholar
  14. Fustec E., Mariotti A., Grillo X. and Sajus J. 1991. Nitrate removal by denitrification in alluvial ground water: Role of a former channel. Journal of Hydrology 123: 337-354.Google Scholar
  15. Garnier J., Billen G., Sanchez N. and Leporcq B. 2000. Ecological functioning of the Marne reservoir (upper Seine Basin, France). Regul. Rivers: Res. Mgmt. 16: 51-71.Google Scholar
  16. Garnier J., Leporcq B., Sanchez N. and Philippon X. 1999. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemestry 47: 119-146.Google Scholar
  17. Garnier J., Billen G. and Levassor A. 1998. Réservoirs: fonctionnement et impacts écologiques. In: Meybeck M., de Marsily G. and Fustec E. (eds), “La Seine en son Bassin”: Fonctionnement écologique d'un système anthropisé, Chapitre 6., pp. 263-300.Google Scholar
  18. Greenberg A.E., Clesceri L.S. and Eaton A.D. 1992. Standard methods for the examination of water and wastewater 18th edn., 4/75-4/93.Google Scholar
  19. Hill A.R., Devito K.J., Campagnolo S. and Sanmugadas K. 2000. Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51: 193-223.Google Scholar
  20. Hinkle S.R., Duff J.H., Triska F.J., Laenen A., Gates E.B., Bencala K.E. et al. 2001. Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA. Journal of Hydrology 244: 157-180.Google Scholar
  21. Howarth R.W., Billen G., Swaney D., Townsend A., Jaworski N., Lajtha K. et al. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35: 75-139.Google Scholar
  22. Katz B.G., Hornsby H.D., Böhlke J.F. and Mokray M.F. 1999. Sources and chronology of nitrate contamination in spring waters, Suwannee River Basin, Florida. Water-Resources Investigations Report 99-4252. US Geological Survey.Google Scholar
  23. Kellman L. and Hillaire-Marcel C. 1998. Nitrate cycling in streams: using natural abundances of NO315N to measure in-situ denitrification. Biochemistry 43: 273-292.Google Scholar
  24. Lowrance R., Vellidis G. and Hubbard H.K. 1995. Denitrification in a restored riparian forest wetland. J. Environ. Qual. 24: 808-815.Google Scholar
  25. Mariotti A. 1982. Apports de la géochimie isotopique à la composition à la connaissance du cycle de l'azote. Mem. Sci. Terre, Univ. Curie, Paris, n° 82-13.Google Scholar
  26. Mariotti A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303: 685-687.Google Scholar
  27. Mariotti A. 1984. Natural 15N abundance measurements and atmospheric nitrogen standard calibration. Nature 311: 251-252.Google Scholar
  28. Mariotti A. 1986. La dénitrification dans les eaux souterraines, principes et méthodes de son identification. J. Hydrology 88: 1-23.Google Scholar
  29. Mariotti A. 1994. Dénitrification in situ dans les eaux souterrainnes, processus naturels ou provoqués: une revue. Hydrogéologie 3: 43-68.Google Scholar
  30. Mariotti A., Létolle R., Blavoux B. and Chassaing B. 1975. Détermination par les teneurs naturelles en 15N de l'origine des nitrates: résultats préliminaires sur le bassin de Mélarchez (Seine et Marne). C. R. Acad. Sc. Paris 280: 423-426.Google Scholar
  31. Mariotti A. and Létolle R. 1977. Application de l'étude isotopique de l'azote en Hydrologie et en Hydrogéologie. Analyse des résultats obtenus sur un exemple précis: le Bassin de Mélarchez (Seine et Marne, France). Journal of Hydrology 33: 157-172.Google Scholar
  32. Mariotti A., Ben Halima A. and Berger G. 1976. Apport de l'étude isotopique de l'azote à la connaissance de la pollution des aquifères souterrains par les nitrates en milieu agricole (Brie, Beauce, France). Rev. Géogr. Phys. Géol. Dyn. 18: 375-384.Google Scholar
  33. Mariotti A., Mariotti F., Amarger N., Pizelle G., Ngambi J.M., Champigny M.L. et al. 1980. Fractionnements isotopiques de l'azote lors des processus d'absorption des nitrates et de fixation de l'azote atmosphérique par les plantes. Physiol. Vég. 18: 164-181.Google Scholar
  34. Mariotti A., Germon J.C., Hubert P., Kaiser P., Letolle R., Tardieux A. et al. 1981. Experimental determination of nitrogen kinetic isotope fractionation: some principles, illustration for the denitrification and nitrification processes. Plant and Soil 62: 413-430.Google Scholar
  35. Mariotti A., Germon J.C. and Leclerc A. 1982. Nitrogen isotope fractionnement associated with the NO2 - ? N2 O step of denitrification in soils. Canadian journal of soil science 62: 227-241.Google Scholar
  36. Mayer B., Boyer E.W., Goodale C., Jaworski N.A., Howarth R.W., Seitzinger S. et al. 2002. Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry 57: 171-197.Google Scholar
  37. Mengis M., Schiff S.F., Harris M., English M.C., Aravena R., Elgood R.J. et al. 1999. Multiple geochemical and isotopic approaches for assessing ground water NO3-elimination in a riparian zone. Ground Water 37: 448-457.Google Scholar
  38. Seitzinger S.P., Styles R.V., Boyer B., Alexander R., Billen G., Howarth R. et al. 2002. Nitrogen Retention in Rivers: Model Development and Application to Watersheds in the Eastern US. Biogeochemistry 57: 199-237.Google Scholar
  39. Seitzinger S.P., Nixon S.W., Pilson M.E.Q. and Burkes S. 1980. Denitrification and N2O production in near-shore marine sediments. Geochim. Cosmochim. Acta. 44: 1853-1860.Google Scholar
  40. Simmons R.C., Gold A.J. and Groffman M. 1992. Nitrate dynamics in riparian forests: Groundwater studies. J. Environ. Qual. 21: 659-665.Google Scholar
  41. Spalding R.F. and Exner M.E. 1993. Occurrence of nitrate in groundwater-A review. J. Environ. Qual. 22: 392-402.Google Scholar
  42. Strahler A.H. 1957. Quantitative analysis of watershed geomorphology. Geophys. Union Trans. 38: 913-920.Google Scholar
  43. Wassenaar L.I. 1995. Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using the isotopes of 15N and 18O in NO3-. Applied Geochemistry 10: 391-405.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Mathieu Sebilo
  • Gilles Billen
  • Micheline Grably
  • André Mariotti

There are no affiliations available

Personalised recommendations