Advertisement

Antonie van Leeuwenhoek

, Volume 83, Issue 3, pp 285–291 | Cite as

Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp.

  • Wenbo Ma
  • Stepanka B. Sebestianova
  • Jiri Sebestian
  • Genrich I. Burd
  • Frédérique C. Guinel
  • Bernard R. Glick
Article

Abstract

This is the first report documenting the presence of 1-aminocyclopropane-1-carboxylate (ACC) deaminase in Rhizobium. This enzyme, previously found in free-living bacteria, yeast and fungi, degrades ACC, the immediate precursor of ethylene in higher plants. Thirteen different rhizobial strains were examined by Southern hybridization, Western blots and ACC deaminase enzyme assay. Five of them tested positive for ACC deaminase. Induction of the expression of ACC deaminase was examined in one of the positively tested strains, Rhizobium leguminosarum bv. viciae 128C53K. This rhizobial ACC deaminase had a trace basal level of expression without ACC, but could be induced by a concentration of ACC as low as 1 µM. The more ACC added to this Rhizobium the higher the expression level of the ACC deaminase.

ACC deaminase Ethylene Nodulation Rhizobium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burd G.I., Dixon D.G. and Glick B.R. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237–245.PubMedCrossRefGoogle Scholar
  2. Casella S., Gault R.R., Reynolds K.C., Dyson J.E. and Brockwell J. 1984. Nodulation studies on legumes exotic to Australia: Hedysarum coronarium. FEMS Microbiol. Lett. 22: 37–45.CrossRefGoogle Scholar
  3. Glick B.R., Penrose D.M. and Li J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63–68.PubMedCrossRefGoogle Scholar
  4. Grichko V.P. and Glick B.R. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39: 11–17.CrossRefGoogle Scholar
  5. Guinel F.C. and Sloetjes L.L. 2000. Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16), an pleiotropic mutant that nodulates poorly and has pale green leaves. J. Exp. Bot. 51: 885–894.PubMedCrossRefGoogle Scholar
  6. Hall J.A., Peirson D., Ghosh S. and Glick B.R. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Isr. J. Plant Sci. 44: 37–42.Google Scholar
  7. Honma M. and Shimomura T. 1978. Metabolism of 1-aminocyclo-propane-1-carboxylic acid. Agric. Biol. Chem. 42: 1825–1831.Google Scholar
  8. Itoh T., Aiba H., Baba T., Hayashi K., Inada T., Isono K. et al. 1996. A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1–50.0 min region on the linkage map (Supplement). DNA Res. 3: 441–445.PubMedCrossRefGoogle Scholar
  9. Jia Y.J., Ito H., Matsui H. and Honma M. 2000. 1-aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces. Biosci. Biotechnol. Biochem. 64: 299–305.PubMedCrossRefGoogle Scholar
  10. Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S. et al. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7: 331–338.PubMedCrossRefGoogle Scholar
  11. Lee K.H. and La Rue T.A. 1992. Exogenous ethylene inhibits nodulation of Pisum stivum L. cv Sparkle. Plant Physiol. 100: 1759–1763.PubMedGoogle Scholar
  12. Miller J.F. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY.Google Scholar
  13. Minami R., Uchiyama K., Murakami T., Kawai J., Mikami K., Yamada T. et al. 1998. Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J. Biochem. 123: 1112–1118.PubMedGoogle Scholar
  14. Nukui N., Ezura H., Yuhashi K.I., Yasuta T. and Minamisawa K. 2000. Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol. 41: 893–897.PubMedCrossRefGoogle Scholar
  15. Penmetsa R.V. and Cook D.R. 1997. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275: 527–530.PubMedCrossRefGoogle Scholar
  16. Penrose D.M. and Glick B.R. 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can. J. Microbiol. 47: 368–372.PubMedCrossRefGoogle Scholar
  17. Peters N.K. and Crist-Estes D.K. 1989. Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 91: 690–693.PubMedCrossRefGoogle Scholar
  18. Sambrook J. and Russell D.W. 2001. Molecular Cloning, A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY.Google Scholar
  19. Shah S., Li J., Moffatt B.M. and Glick B.R. 1997. ACC deaminase genes from plant-growth promoting bacteria. In: Ogoshi A., Kobayashi K., Homma Y., Kodama F., Kondo N. and Akino S. (eds), Plant growth-promoting rhizobacteria: present status and future prospectus. Organization for Economic Cooperation and Development, Paris, pp. 320–324.Google Scholar
  20. Shah S., Li J., Moffatt B.A. and Glick B.R. 1998. Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can. J. Microbiol. 44: 833–843.PubMedCrossRefGoogle Scholar
  21. Spaink H.P. 1997. Ethylene as a regulator of Rhizobium infection. Trends Plant Sci. 2: 203–204.CrossRefGoogle Scholar
  22. Wang C., Knill E., Glick B.R. and Défago G. 2000. Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can. J. Microbiol. 46: 898–907.PubMedCrossRefGoogle Scholar
  23. Yuhashi K.I., Ichikawa N., Ezura H., Akao S., Minakawa Y., Nukui N. et al. 2000. Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl. Environ. Microbiol. 66: 2658–2663.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Wenbo Ma
    • 1
  • Stepanka B. Sebestianova
    • 2
  • Jiri Sebestian
    • 3
  • Genrich I. Burd
    • 1
  • Frédérique C. Guinel
    • 4
  • Bernard R. Glick
    • 1
  1. 1.Department of BiologyUniversity of WaterlooWaterlooCanada
  2. 2.Department of GeneticsUniversity of South BohemiaCeske BudejoviceCzech Republic
  3. 3.Laboratory of BiomembranesUniversity of South BohemiaCeske BudejoviceCzech Republic
  4. 4.Department of BiologyWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations