Journal of Mathematical Sciences

, Volume 115, Issue 6, pp 2720–2730

Boundary Estimates for Solutions of the Parabolic Free Boundary Problem

  • D. E. Apushkinskaya
  • H. Shahgholian
  • N. N. Uraltseva
Article

DOI: 10.1023/A:1023357416587

Cite this article as:
Apushkinskaya, D.E., Shahgholian, H. & Uraltseva, N.N. Journal of Mathematical Sciences (2003) 115: 2720. doi:10.1023/A:1023357416587

Abstract

Let u and Ω solve the problem
$$H(u) = X\Omega ,{\text{ }}u = |Du| = 0{\text{ }}in{\text{ }}Q_1^ + \backslash \Omega ,{\text{ }}u = 0{\text{ }}on{\text{ }}\Pi \cap Q_1 ,$$
where Ω is an open set in \(\begin{gathered} \mathbb{R}_ + ^{n + 1} = \{ (x,t):x \in \mathbb{R}^n ,t \in \mathbb{R}^1 ,x_1 >0\} ,n \geqslant 2,H = \Delta - \partial _t \hfill \\ \hfill \\ \end{gathered} \) is the heat operator, \(X\Omega \) denotes the characteristic function of Ω, \(Q_1 \) is the unit cylinder in ℝn+1, \(Q_1^ + = Q_1 \cap \mathbb{R}_ + ^{n + 1} ,\Pi = \{ (x,t):x1 = 0\} \), and the first equation is satisfied in the sense of distributions. We obtain the optimal regularity of the function u, i.e., we show that \( \in C_x^{1,1} \cap C_t^{0,1} \). Bibliography: 6 titles.

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • D. E. Apushkinskaya
    • 1
  • H. Shahgholian
    • 2
  • N. N. Uraltseva
    • 1
  1. 1.St.Petersburg State UniversityRussia
  2. 2.Royal Institute of TechnologyStockholmSweden

Personalised recommendations