Biochemical Genetics

, Volume 41, Issue 5–6, pp 127–140 | Cite as

Biochemical Genetic Variability in Brown Hares (Lepus europaeus) from Greece

  • Franz Suchentrunk
  • Zissis Mamuris
  • Athanassios I. Sfougaris
  • Costas Stamatis


Allozyme variability of 91 brown hares (Lepus europaeus) from seven regions in Greece was compared to existing data of Bulgarian populations to test the hypothesis of the occurrence of specific alleles in Greece, likely stemming from an isolated Late Pleistocene refugial population in the southern Balkans. This hypothesis is particularly suggested by some subfossil Late Pleistocene hare remains in Greece and the reported high mtDNA diversity in Greek hares. Allozymic diversity could be higher in Greek hares than in hares from neighboring regions as a result of the accumulation of variants in a long-lasting Pleistocene refugium. Conversely, Greek hares could exhibit reduced genetic diversity because of long-lasting low effective population sizes during the Late Glacial Maximum and a lower chance of postglacial gene flow from other populations into this rather marginal part in the southern Balkans. Horizontal starch gel electrophoresis of proteins from 35~loci revealed three alleles (Es-1−162, Pep-2114, Mpi88) at low frequencies, which were not found in Bulgarian or any other brown hare population. In contrast, some alleles from the populations from Bulgaria and other regions of Europe were absent in the Greek samples. Population genetic statistics indicated only a slight tendency of increased gene pool diversity in Greek hares, little substructuring in Greek and Bulgarian populations, respectively, as well as an only slightly lower level of gene flow between the two neighboring regions, as compared to the gene flow within each region. The results conform to the hypothesis of a Late Pleistocene refugial population in the southern Balkans, with some few specific nuclear gene pool characteristics, but little effect on the overall genetic differentiation between Greek and Bulgarian hares.

brown hare Lepus europaeus allozymes population genetics Greece Mediterranean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves, P. C., Branco, M., Matias, O., & Ferrand, N. (2000). New genetic variation in the European hares, Lepus granatensis and L. europaeus. Biochem. Genet. 38:87–96.PubMedGoogle Scholar
  2. Alves, P. C., & Ferrand, N. (1999). Genetic variability in Portugese populations of the Iberian hare, Lepus granatensis. Folia Zool. 48(Suppl. 1):3–10.Google Scholar
  3. Alves, P. C., Ferrand, N., & Suchentrunk, F. (2001). Developmental stability and protein heterozygosity in a local population of Iberian hares (Lepus granatensis). Mamm. Biol. 66:238–250.Google Scholar
  4. Angermann, R. (1983). The taxonomy of Old World Lepus. Acta Zool. Fenn. 174:17–21.Google Scholar
  5. Bennett, K. D., Tzedakis, P. C., & Willis, K. J. (1991). Quaternary refugia of north European trees. J. Biogeogr. 18:103–115.Google Scholar
  6. Bonhomme, F., Fernandez, J., Palacios, F., Catalan, J., & Machordon, A. (1986). Charactérisation du complex d'espèces du genre Lepus en Espagne. Mammalia 50:495–506.Google Scholar
  7. Chaworth-Musters, J. L. (1932). A contribution to our knowledge of the mammals of Macedonia and Thessaly. Ann. Mag. Nat. Hist. Ser. 10(9):169.Google Scholar
  8. Chesser, R. K. (1993). Genetic variability within and among populations of the black-tailed prairie dog. Evolution 37:320–331.Google Scholar
  9. Corbet, G. B. (1986). Relationships and origins of the European lagomorphs. Mamm. Rev. 16:105–110.Google Scholar
  10. De Beaufort, F. (1991). La faune des mammifères de Grèce: Caractéristiques, endèmisme, particularismes. Biologia Gallo-hellenica 18:99–106.Google Scholar
  11. De Beaux, O. (1929). Ricerche faunistiche nelle isole Italiane dell' Egeo. Mammiferi. Arch. Zool. Ital. 13:1–25.Google Scholar
  12. Farris, J. S. (1972). Estimating phylogenetic trees from distance matrices. Am. Nat. 106:645–668.Google Scholar
  13. Fickel, J., Lieckfeld, D., & Pitra, C. (1999). Analyze der genetischen Diversität und Struktur in benachbarten Populationen des Feldhasen (Lepus europaeus, Pallas 1778). Z. Jagdwiss. 45:230–237.Google Scholar
  14. Frenzel, B., Pécsi, M., & Velichko, A. A. (1992). Atlas of Paleoclimates and Paleo-environments of the Northern Hemisphere, Late Pleistocene—Holocene, Geographical Research Institute, Hungarian Academy of Sciences, Budapest, G. Fischer Verlag, Budapest, pp. 1–153.Google Scholar
  15. Geraga, M., Tsaila-Monopolis, S., Ioakim, C., Papatheodorou, G., & Ferentinos, G. (2000). Evaluation of palaeoenvironmental changes during the last 18,000 years in the Myrtoon basin, SW Aegean Sea. Palaeogeogr. Palaeoclim. Palaeoecol. 156:1–17.Google Scholar
  16. Goudet, J. (1995). Fstat Version 1.2. A computer program to calculate F-statistics. J. Hered. 86:485–486.Google Scholar
  17. Goudet, J. (2001). Fstat, a program to estimate and test gene diversities and fixation indices, version 2.9.3. Available from Updated from Goudet (1995).Google Scholar
  18. Grillitsch, M., Hartl, G. B., Suchentrunk, F., & Willing, R. (1992). Allozyme evolution and the molecular clock in the Lagomorpha. Acta Theriol. 37:1–13.Google Scholar
  19. Harris, H., & Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics, North-Holland Publishing, Amsterdam.Google Scholar
  20. Hartl, G. B., & Höger, H. (1986). Biochemical variation in purebred and crossbred strains of domestic rabbit Oryctolagus cuniculus L. Genet. Res. (Camb.) 48:27–34.Google Scholar
  21. Hartl, G. B., Markowski, J., Kovacs, G., Grillitsch, M., & Willing, R. (1990). Biochemical variation and differentiation in the brown hare (Lepus europaeus) of Central Europe. Z. Säugetierk. 55:186–193.Google Scholar
  22. Hartl, G. B., Markowski, J., Swiatecki, A., Janiszewski, T., & Willing, R. (1992). Genetic diversity in the Polish brown hare Lepus europaeus Pallas, 1778: Implications for conservation and management. Acta Theriol. 37:15–25.Google Scholar
  23. Hartl, G. B., Suchentrunk, F., Nadlinger, K., & Willing, R. (1993). An integrative analysis of genetic differentiation in the brown hare Lepus europaeus based on morphology, allozymes, and mitochondrial DNA. Acta Theriol. 38(Suppl. 2):33–57.Google Scholar
  24. Hartl, G. B., Suchentrunk, F., Willing, R., & Grillitsch, M. (1989). Biochemisch-genetische Variabilität und Differenzierung beim Feldhasen (Lepus europaeus) in Niederösterreich. Wien. Tierärztl. Monatsschr. 76:279–284.Google Scholar
  25. Hartl, G. B., Suchentrunk, F., Willing, R., & Petznek, R. (1995). Allozyme heterozygosity and fluctuating asymmetry in the brown hare (Lepus europaeus): A test of the developmental homeostasis hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 350:313–323.Google Scholar
  26. Hartl, G. B., Willing, R., & Nadlinger, K. (1994). Allozymes in mammalian population genetics and systematics: Indicative function of a marker system reconsidered. In Schierwater, B., Streit, B., Wagner, G. P., & DeSalle, R. (eds.), Molecular Ecology and Evolution: Approaches and Applications, Birkhäuser Verlag, Basel, Switzerland, pp. 299–310.Google Scholar
  27. Hilzheimer, M. (1906). Die europäischen Hasen. Zool. Anz. 30:510–513.Google Scholar
  28. Hilzheimer, M. (1908). Die Hasenarten Europas. Mitt. Kgl. Naturalienkab. zu Stuttgart 59:1–39.Google Scholar
  29. Kasapidis, P., Suchentrunk, F., Magoulas, A., & Kotoulas, G. (submitted). The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of Late Pleistocene climatic fluctuations and anthropogenic translocations.Google Scholar
  30. Kattinger, E. (1972). Beiträge zur Säugetierkunde der südlichen Balkaninsel und des Vorderen Orients (Syrien und Unterägypten). Ber. d. Naturf. Ges. Bamberg 46:11–32.Google Scholar
  31. Lang, G. (1994). Quartäre vegetations Geschichte europas. Methoden und ergebnisse. G. Fischer, Jena, 62 pp.Google Scholar
  32. Mamuris, Z., Sfougaris, A. I., & Stamatis, C. (2001). Genetic structure of Greek brown hare (Lepus europaeus) populations as revealed by mtDBNA–PCR analysis: Implications for conserving genetic diversity. Biol. Conserv. 101:187–196.Google Scholar
  33. Mamuris, Z., Sfougaris, A. I., Stamatis, C., & Suchentrunk, F. (2002). Genetic structure of Greek brown hare (Lepus europaeus) populations based on the Random Amplified Polymorphic DNA (RAPD) method. Biochem. Genet. 40:323–338.PubMedGoogle Scholar
  34. Miller, G. S. (1912). Catalogue of the Mammals of Western Europe (Europe exclusive of Russia) in the collection of the British Museum. British Museum, London, 1019 pp.Google Scholar
  35. Nei, M. (1977). F-statisitcs and analysis of gene diversity in subdivided populations. Ann. Human Genet. 41:225–233.Google Scholar
  36. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.Google Scholar
  37. Ondrias, J. C. (1965). Die Säugetiere Griechenlands. Säugetierk. Mitt. 13:109–127.Google Scholar
  38. Reisch, L. (1976). Beobachtungen an Vogelknochen aus dem Spätpleistozän an der Höhle Kephalari (Argolis, Griechenland). Archäolog. Korrespondenzblatt 6:261–265.Google Scholar
  39. Rice, W. S. (1989). Analyzing tables of statistical tests. Evolution 43:223–225.Google Scholar
  40. Roberts, N., Kuzucuoglu, C., & Karabiyikoglu, M. 1999. The Late Quaternary in the Eastern Mediterranean region: An introduction. Q. Sci. Rev. 18:497–499.Google Scholar
  41. Roberts, N., & Wright, H. E., Jr. (1993). Vegetational, lake-level, and climatic history of the Near East and Southwest Asia. In Wright, H. E., Jr., Kutzbach, J. E., Webb, T., III, Ruddiman, W. F., Street-Perrot, F. H., & Bartlein, P. J. (eds.), Global Climates Since the Last Glacial Maximum, University of Minnesota Press, Minneapolis, pGoogle Scholar
  42. Rothe, G. M. (1994). Electrophoresis of Enzymes: Laboratory Methods. Springer LAB Manual, Springer, Berlin, Germany, 307 pp.Google Scholar
  43. Sfougaris, A., Papageorgiou, N., Giannakopoulos, A., Goumas, H., Papaevangelou, E., & Anni A. (1999). Distribution, populations and habitat of the European hare (Lepus europaeus Pallas, 1778) in central and western Greece. In Thomaides, C., & Kypridimos, N. (eds.), Proceedings of 24th Congress of International Union of Game Biology: Agriculture–Forestry–Game: Integrating Wildlife in Land Management, Sept. 20–24, 1999, Thessaloniki, Greece, pp. 423–430.Google Scholar
  44. Swofford, D. L., & Selander, R. B. (1989). BIOSYS-1. A computer program for the analysis of allelic variation in population genetics and biochemical systematics, Release 1.7. Users manual. Champaign: Illinois Natural History Survey.Google Scholar
  45. Suchentrunk, F. (1993). Variability of minor tooth traits and allozymic diversity in brown hare Lepus europaeus populations. Acta Theriol. 38(Suppl. 2):59–69.Google Scholar
  46. Suchentrunk, F., Alkon, P. U., Willing, R., & Yom-Tov, Y. (2000b). Epigenetic dental variability of Israeli hares (Lepus sp.): Ecogenetic or phylogenetic causation? J. Zool. 252:503–515.Google Scholar
  47. Suchentrunk, F., Hartl, G. B., Flux, J. E. C., Parkes, J., Haiden, A., & Tapper, S. (1998). Allozyme heterozygosity and fluctuating asymmetry in brown hares Lepus europaeus introduced to New Zealand: Developmental homeostasis in populations with a bottleneck history. Acta Theriol. 5(Suppl.):35–52.Google Scholar
  48. Suchentrunk, F., Jaschke, C., & Haiden, A. (2001). Little allozyme and mtDNA variability in brown hares (Lepus europaeus) from New Zealand and Britain—A legacy of bottlenecks? Mamm. Biol. 66:48–59.Google Scholar
  49. Suchentrunk, F., Michailov, C., Markov, G., & Haiden, A. (2000a). Population genetics of Bulgarian brown hares Lepus europaeus: Allozymic diversity at zoogeographical crossroads. Acta Theriol. 45:1–12.Google Scholar
  50. Suchentrunk, F., Polster, K., Giacometti, M., Ratti, P. C.-G., Thulin, C., Ruhlé, C., Vasil'ev, A. G., & Slotta-Bachmayr, L. (1999). Spatial partitioning of allozyme variability in European mountain hares (Lepus timidus): Gene pool divergence across a disjunct distributional range? Z. Säugetierkunde 64:1–11.Google Scholar
  51. Thulin, C. G., & Tegelström, H. (2001). High mtDNA haplotype diversity among introduced Swedish brown hares Lepus europaeus. Acta Theriol. 46:375–384.Google Scholar
  52. Tiedemann, R., Hammer, S., Suchentrunk, F., & Hartl, G. B. (1996). Allozyme variability in medium-sized and large mammals: determinants, estimators, and significance for conservation. Biodiv. Lett. 3:81–91.Google Scholar
  53. Von Wettstein, O. (1943). Eine neue Hasenrasse vom Peloponnes. Zool. Anz. 143:282–284.Google Scholar
  54. Weir, B. S., & Cockerham, C.C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.Google Scholar
  55. Wright, S. (1943). Isolation by distance. Genetics 28:114–138.Google Scholar
  56. Wright S. (1978). Evolution and Genetics of Populations, Vol. IV: Variability Within and Among Natural Populations, University Chicago Press, Chicago, 580 pp.Google Scholar
  57. Zimmermann, K., von Wettstein, O, and Pohle, O. (1953). Die Wildsäuger von Kreta. Z. Säugetierk. 17:1–72.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Franz Suchentrunk
  • Zissis Mamuris
  • Athanassios I. Sfougaris
  • Costas Stamatis

There are no affiliations available

Personalised recommendations