Nutrient Cycling in Agroecosystems

, Volume 66, Issue 1, pp 71–102 | Cite as

Uncertainties in the fate of nitrogen II: A quantitative assessment of the uncertainties in major nitrogen fluxes in the Netherlands

  • W. de Vries
  • J. Kros
  • O. Oenema
  • J. de Klein


Enhanced levels of nitrogen in the environment may have several adverse effects, including decreased plant species diversity in (semi) natural terrestrial ecosystems, eutrophication of surface waters, pollution of groundwater due to nitrate leaching and global warming due to nitrous and nitrogen oxide (N2O and NOx) emissions. To determine the effectiveness of policies aimed at the reduction of emission of ammonia (NH3), N2O and NOx, nitrate (NO3) leaching and nitrogen (N) runoff, it is essential to have information on the fate of nitrogen in both agricultural and non-agricultural soils on a regional and national scale and its inherent uncertainties. In this paper, we quantified the uncertainties in the emission, uptake, accumulation, denitrification, leaching and runoff of nitrogen at a national scale and for specific land use–soil type combinations. Furthermore, we identified which parameters contribute most to the overall uncertainty in the emission of ammonia to the atmosphere and the leaching/runoff to groundwater and surface water. To gain quantitative insight into the propagation of the uncertainty, a model was developed representing all crucial processes in the N chain by simple process descriptions. Uncertainties were quantified for the Netherlands as a whole, including terrestrial systems, both agricultural and non-agricultural land, and aquatic systems. For agricultural and non-agricultural land, plots were distinguished, consisting of a multiple of 500 × 500 m2 and of 250 × 250 m2 grid cells, respectively, with unique combinations of soil use, soil type and groundwater table class that were derived from existing digital maps. Model parameters were assigned by using relationships with soil type, groundwater level class and land use. The uncertainty was quantified by means of a Monte Carlo analysis, whereas statistical approaches were used to identify which parameters contribute most to the overall uncertainty of the fate of nitrogen. The 90% confidence interval for the fluxes of N compounds to air, groundwater and surface water (in Gg N.yr−1) ranged between 102 and 194 for ammonia emission, between 18 and 51 for N2O emissions, between 32 and 108 for NO3 inflow to groundwater and between 2 and 38 for N inflow to surface water. The uncertainty in NH3 emission was mainly caused by the uncertainty in the NH3 emission fractions for animal manure, whereas the uncertainty in N2O emission was mainly due to the uncertainty in the fractions relating total nitrification and denitrification to N2O emissions. The uncertainty in inflow to groundwater and runoff to surface water was mainly caused by the uncertainty in denitrification in the soil and in upper groundwater and in non-agricultural soils also by the N accumulation in the soil. In view of the need to monitor and evaluate the impact of N reduction policies and measures, it is essential to put more effort in activities yielding a reduction of these large uncertainties, such as additional data gathering and process research under field circumstances.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arts G.H.P. 1990. Deterioration of Atlantic soft-water systems and their flora, Ph.D. Thesis, Catholic University of Nijmegen, Nijmegen, the Netherlands, 197 pp.Google Scholar
  2. Berendse F. 1988. De nutriëntenbalans van droge zandgrond-vegetaties in verband met de eutrofiëring via de lucht. Deel 1. Een simulatiemodel als hulpmiddel bij het beheer van vochtige heidevelden. Centrum voor Agrobiologisch Onderzoek, Wagensmallingen, the Netherlands, 51 pp.Google Scholar
  3. Bobbink R., Hornung M. and Roelofs J.G.M. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural andsemi-natural European vegetation. J. Ecol. 86: 717-738.Google Scholar
  4. Boers P.C.M., Boogaard H.L., Hoogeveen J., Kroes J.G., Noij I.G.A.M., Roest C.W.J. et al. 1997. Watersysteemverkenningen 1996. Huidige en toekomstige belasting van het oppervlaktewapolicy. ter met stikstof en fosfaat vanuit de landbouw. RIZA Rapport 97.013; SC-DLO rapport 532, 217 pp.Google Scholar
  5. Breeuwsma A., Chardon J.P., Kragt J.F. and de Vries W. 1991. Pedotransfer functions for denitrification. Soil and grondwater research report II: Nitrate in soils. Commission of the European Communities, Brussels pp. 207-215.Google Scholar
  6. CBS/LEI 1999. Agriculture, Environment and Economy 1999 (inDutch). CBS/LEI, The Hague, the Netherlands, 147 pp.Google Scholar
  7. De Klein C.A.M. and Van Logtestijn R.S.P. 1994a. Denitrificationin the top soil of managed grassland in Netherlands in relation to soil type and fertilizer level. Plant Soil 163: 33-44.Google Scholar
  8. De Klein C.A.M. and Van Logtestijn R.S.P. 1994b. Denitrificationand N2O emission from urine-affected grassland soil. Plant Soil 2163: 235-242.Google Scholar
  9. De Klein C.A.M., Van Logtestijn R.S.P., van der Meer H.G. and Geurink J.H. 1996. Nitrogen losses due to denitrification fromcattle slurry injected into grassland soil with and without a nitrification inhibitor. Plant Soil 183: 161-170.Google Scholar
  10. De Klein C.A.M. and Van Logtestijn R.S.P. 1996. Denitrificationin grassland soils in the Netherlands in relation to irrigation, Napplication rate, soil water content and soil temperature. Soil Biol. Biochem. 28: 231-237.Google Scholar
  11. De Visser P.H.B. and de Vries W. 1989. The annual average waterbalance of forest, heatland and grassland vegetations. Stichtingvoor Bodemkartering, Wageningen, the Netherlands, Report 2085, 136 pp (in Dutch).Google Scholar
  12. De Vries W. 1991. Methodologies for the assessment and mapping of critical loads and the impact of abatement strategies on forest soils. DLO Winand Staring Center for Integrated Land, Soil and Water Research, Report 46. Wageningen, the Netherlands, 109 pp.Google Scholar
  13. De Vries W. 1996. Critical loads for acidity and nitrogen for dutch forests on a 1 km × 1 km grid. DLO Winand Staring Centre for Integrated Land, Soil and Water Research, Report 113. Wageningen, the Netherlands, 44 pp.Google Scholar
  14. De Vries W., Kros J. and Voogd J.C.H. 1994. Assessment of critical loads and their exceedance on Dutch forests using a multi-layer steady state model. Water Air Soil Pollut. 76: 407-448.Google Scholar
  15. De Vries W., Van Grinsven J.J.M., Van Breemen N., Leeters E.E.J.M. and Jansen P.C. 1995. Impacts of acid atmospheric deposition on concentrations and fluxes of solutes in Dutch forest soils. Geoderma 67: 17-43.Google Scholar
  16. De Vries W., Van der Salm C., Hinsberg A. and Kros J. 2000. Site specific critical loads for nitrogen and acidity for various effects on terrestrial ecosystems. Milieu 2000/3 (in Dutch): 144-158.Google Scholar
  17. De Vries W., Reinds G.J., Van der Salm C., Draaijers G.P.J., Bleeker A., Erisman J.W. et al. 2001. Intensive Monitoring of Forest Ecosystems in Europe. Technical Report 2001. UN/ECE, EC, Forest Intensive Monitoring Co-ordinating Institute, Heerenveen, the Netherlands, 177 pp.Google Scholar
  18. Draper N.R. and Smith H. 1981. Applied Regression Analysis. 2nd edn. John Wiley & Sons, Inc., New York.Google Scholar
  19. Erisman J.W. and Monteny G.J. 1999. Possible causes for the Wagensmall impacts of measures on the decrease of the ammonia emission in the Netherlands. Milieu 1999/1 (in Dutch): 2-10.Google Scholar
  20. Erisman J.W., Bleeker A. and van Jaarsveld J.A. 1998. Evaluation of ammonia emission abatement on the basis of measurements and model calculations. Environ. Pollut. 102: 269-274.Google Scholar
  21. Erisman J.W., de Vries W., Kros J., Oenema O., van der Eerden L., van Zeijts H. et al. 2001. An outlook for an integrated nitrogen policy. Environ. Sci. Policy 4: 87-95.Google Scholar
  22. Fraters B., Vissenberg H.A., Boumans L.J.M., de Haan T. and de Hoop D.W. 1997. Results of a measuring program quality upper groundwater in agricultural sandy areas (MKBGL) 1992-1995. RIVM report 714801014 (in Dutch).Google Scholar
  23. Fraters B., Boumans L.J.M., van Drecht G., de Haan T. and de Hoop D.W. 1998. Nitrogen monitoring in groundwater in the sandy regions of the Netherlands. Environ. Pollut. 102: 479-485.Google Scholar
  24. Galloway J.N. 1998. The global nitrogen cycle: changes and consequences. Environ. Pollut. 102: 15-24.Google Scholar
  25. Gardner R.H., Rojder B. and Bergstrom U. 1983. PRISM: A systematic Method for Determining the Effect of Parameter Uncertainties on Model Prediction. Studsvik Energiteknik AB, Report Studsvik/NW-83/555, Nykoping, Sweden.Google Scholar
  26. Gundersen P., Callesen I. and deVries W. 1998. Nitrate leaching in forest soils is related to forest floor C/N ratios. Environ. Pollut. 102: 403-407.Google Scholar
  27. Hassink 1995. Organic matter dynamics and N mineralization in grassland soils, Ph.D. Thesis, Agricultural University Wageningen, Wageningen, the Netherlands, 250 pp.Google Scholar
  28. Haynes R.J. and Williams P.H. 1993. Nutrient cycling and soil fertility in the grazed pasture ecosystems. Adv. Agron. 49: 119-199.Google Scholar
  29. Hettelingh J.P. 1990. Uncertainty in modeling regional environ-mental systems: the generalization of a watershed acidification model for predicting broad scale effects, Ph.D. Thesis Free University, Amsterdam; RR-90-3, International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  30. Huijsmans J.F.M., Hol J.M.G. and Bussink D.W. 1997. Reduction of ammonia losses by new slurry application techniques on grassland. In: Jarvis S.C. and Pain B.F. (eds), Gaseous Nitrogen Emissions from Grasslands. CAB International, Wallingford, UK, pp. 281-286.Google Scholar
  31. Iman R.L. and Conover W.J. 1980. Commun. Statist.Theor. Meth. A9: 1749.Google Scholar
  32. IPCC 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC, Geneva, Switzerland.Google Scholar
  33. Janssen P.H.M., Rotmans J. and Slob W. 1990. Sensitivity analysis nitroand uncertainty analysis: an inventory of ideas, methods and techniques. RIVM Report 958805001, RIVM, Bilthoven, the Netherlands (in Dutch).Google Scholar
  34. Janssen P.H.M., Heuberger P.S.C. and Sanders R. 1992. UN-CSAM 1.1: A software package for sensitivity and uncertainty analysis, Manual. RIVM Report 959101004, RIVM, Bilthoven, the Netherlands.Google Scholar
  35. Kester R.A., Meijer M.E., Libochant J.A., de Boer W. and Laanbroek H.J. 1997. Contributions of nitrification and denitrification to the NO and N2O emissions of an acid forest soil, a 2 river sediment and a fertilized grassland. Soil Biol. Biochem. 29: 11-12.Google Scholar
  36. Klap J.M., de Vries W. and Leeters E.E.J.M. 1999. Effects of acid atmospheric deposition on the chemical composition of loess, clay and peat soils under forest in the Netherlands. DLO Winand Staring Centre for Integrated Land, Soil and Water Research, Report 97. Wageningen, the Netherlands, 143 pp.Google Scholar
  37. Koops J.G., Oenema O. and van Beusichem M.L. 1996. Denitrification in the top and sub soil of grassland on peat soils. Plant Soil 184: 1-10.Google Scholar
  38. Koops J.G., van Beusichem M.L. and Oenema O. 1997a. Nitrogen loss from grassland on peat soils through nitrous oxide production. Plant Soil 188: 119-130.Google Scholar
  39. Koops J.G., van Beusichem M.L. and Oenema O. 1997b. Nitrousoxide production, its source and distribution in urine patches in grassland on peat soil. Plant Soil 191: 57-65.Google Scholar
  40. Kroeze C. and Bogdanov S. 1997. Application of two methods for N2O emission estimates to Bulgaria and the Netherlands. 2 IDOJARAS. Quart. J. Hung. Meteorol. Serv. 101: 239-260.Google Scholar
  41. Kroeze C., Aerts R., van Breemen N., van Dam D., van der Hoek K., Hofschreuder P. et al. 2003. Uncertainties in the fate of nitrogen I: An overview of sources of uncertainty illustrated with a Dutch case study. Nutr. Cycl. Agroecosyst. 66 (this issue): 43-69.Google Scholar
  42. Kronvang B., Svendsen L.M., Jensen J.P. and Dørge J. 1999. Scenario analysis of nutrient management at the river basin scale. Hydrobiologia 410: 207-212.Google Scholar
  43. Kros J., De Vries W., Janssen P. and Bak C. 1993. The uncertainty in forecasting regional trends of forest soil acidification. Water Air Soil Pollut. 66: 29-58.Google Scholar
  44. Kros J., Reinds G.J., De Vries W., Latour J.B. and Bollen M. 1995. Modelling of soil acidity and nitrogen availability in natural ecosystems in response to changes in acid deposition and hydrology. DLO Winand Staring Centre for Integrated Land, Soil and Water Resarch, Report 95. Wageningen, the Netherlands, 90 pp.Google Scholar
  45. LNV 1993. Notitie mest en ammoniakbeleid derde fase. Ministry of Agriculture, The Hague, the Netherlands.Google Scholar
  46. McKay M.A., Beckmann R.J. and Conover W.J. 1979. Technometrics 21: 239.Google Scholar
  47. Merino P.P. 2000. Evaluation of factors controlling the emissions of nitrogen oxides from grassland, Ph.D. Thesis, University of Bilbao, Bilbao, Spain, 211 pp.Google Scholar
  48. Meybeck M. 1982. Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci. 282: 401-540.Google Scholar
  49. Ministry of Transport, Public Works and Water Management 1984. De waterhuishouding van Nederland (in Dutch). The Hague, the Netherlands, 1985.Google Scholar
  50. Mosier A., Kroeze C., Nevison C., Oenema O., Seitzinger S. and van Cleemput O. 1998. Closing the global atmospheric N2O budget: nitrous oxide emissions through the agricultural nitroand gen cycle. (OECD/IPCC/IEA Phase II; Development of IPCC Guidelines for National Greenhouse Gas Inventories). Nutr. Cycl. Agroecosyst. 52: 225-248.Google Scholar
  51. Neeteson J.J. 1989. Assessment of fertilizer nitrogen requirement of potatoes en sugar beet, Ph.D. Thesis, Wageningen University, Wageningen, the Netherlands.Google Scholar
  52. Oenema O. and Roest C.W.J. 1998. Nitrogen and phosphorus losses from agriculture into surface waters; the effects of policies and measures in the Netherlands. Wat. Sci. Technol. 37: 19-30.Google Scholar
  53. Oenema O., Velthof G.L. and Bussink D.W. 1993. Emissions of ammonia, nitrous oxide and methane from cattle slurry. In: Oremland R.S. (ed.), Biogeochemistry of Global Change:Radiatively Active Trace Gases. Chapman & Hall, New York, pp. 419-433.Google Scholar
  54. Oenema O., Velthof G.L., Yamulki S. and Jarvis S.C. 1997. Nitrous oxide emissions from grazed grassland. Soil Use Manage. 13: 288-295.Google Scholar
  55. Oenema O., Boers P.C.M., van Eerdt M.M., Fraters B., van der Meer H.G., Roest C.W.J. et al. 1998. Leaching of nitrate from agriculture to groundwater: the effect of policies and measures in the Netherlands. Environ. Pollut. 102: 471-478.Google Scholar
  56. Oenema O., Velthof G.L., Verdoes N., Groot Koerkamp P.W.G., Monteny G.J., Bannink A. et al. 2000. Generic values for gaseous nitrogen losses from housing and manure storage systems. Alterra-rapport 107, ISSN 1566-7197, Wageningen, the Netherlands, 186 pp. (in Dutch).Google Scholar
  57. Olsthoorn C.S.M. and Fong N.P.K. 1998. The anthropogenic nitrogen cycle in the Netherlands. Nutr. Cycl. Agroecosyst. 52: 269-276.Google Scholar
  58. Portielje R. 1996. Retention of nutrients in water systems: a literature study. Department of water quality management, Agricultural University Wageningen, Wageningen, the Netherlands (in Dutch).Google Scholar
  59. Portielje R. and Van der Molen D.T. 1998. Relations between indicators for eutrophication and system characteristics of Dutch lakes and pools. RIZA report 98.007, 98 pp. (in Dutch).Google Scholar
  60. Portielje R. and De Klein J. 2001. Retention of nutrients in water systems. Riza Lelystad, report number 2001.133X (in Dutch).Google Scholar
  61. RIVM/CBS 1999. Milieucompendium (1999). The environment in values. ISBN 90 14062 29 X. National Institute for Public Health and the Environment, Bilthoven, the Netherlands, and Central Bureau for Statistics, Voorburg, the Netherlands (in Dutch).Google Scholar
  62. Rappoldt C. and Corre W.J. 1997. Spatial patterns in soil oxygen Unicontent and nitrous oxide emission from drained grassland. In: Jarvis S.C. and Pain B.F. (eds), Gaseous Nitrogen Emissions from Grasslands. CAB International, Wallingford, UK, pp. 165-172.Google Scholar
  63. Reijneveld A., Habekotte B., Aarts H.F.M. and Oenema J. 2000. Typical Dutch; zicht op verscheidenheid binnen de Nederlandse melkveehouderij. Plant Research International Rapport 8, Wageningen, the Netherlands, 87 pp.Google Scholar
  64. Ruitenberg G.H., Wopereis F.A. and Oenema O. 1991. Calculated optimal fertiliser application rates for grassland in relation to soil type (in Dutch). Winand Staring Centre Report 173, Wageningen, the Netherlands, 62 pp.Google Scholar
  65. Schröder J.J. 1998. Towards improved nitrogen management in silage maize production on sandysoils, Ph.D. Thesis, Wageningen University, Wageningen, the Netherlands, 223 pp.Google Scholar
  66. Skiba U., Smith K.A. and Fowler D. 1993. Nitrification and denitrification as source of nitric oxide and nitrous oxide in a sandy loam. Soil Biol. Biochem. 25: 1527-1536.Google Scholar
  67. Steenvoorden J.H.A.M., Bruins W.J., van der Eerdt M.M., Hoogeveen M.W., Hoogervorst N., Huijsmans J.F.M. et al. 1999. Monitoring van ammoniakemissies uit de landbouw. Op weg naar een verbeterde rekenmethodiek. Reeks Milieuplanbureau 6, Wageningen, the Netherlands 141 pp.Google Scholar
  68. Steenvoorden J. 1984. Effects of changes in water management on the water quality. Institute for Land and Water Management, Wageningen, the Netherlands, Report no. 1554 (in Dutch).Google Scholar
  69. Tietema A. and Verstraten J.M. 1991. Nitrogen cycling in an acid forest ecosystem in the Netherlands at increased atmospheric nitrogen input. The nitrogen budget and the effects of nitrogen transformations on the proton budget. Biogeochemistry 15: 21-46.Google Scholar
  70. Tilman D., Fargione J., Wolff B., D'Antonio C., Dobson A., Howarth R. et al. 2001. Forecasting agriculturally driven global environmental change. Science 292: 281-284.Google Scholar
  71. Van Breemen N. and Van Dijk H.F.G. 1988. Ecosystem effects of atmospheric deposition of nitrogen in the Netherlands. Environ. Pollut. 54: 249-274.Google Scholar
  72. Van den Burg J. and Schoenfeld P.H. 1988. Changes in stand characteristics of two generations of coniferous stands on previous heathlands in Drenthe. Instituut voor Bosbouw en Groenbeheer ‘De Dorschkamp’, Wageningen, the Netherlands, Rapport nr. 491, 124 pp. (in Dutch).Google Scholar
  73. Van der Eerden L.J.W., de Vries W., de Visser P.H.B., van Dobben H.F., Steingröver E.G., Dueck Th.A. et al. 1995. Effects on forest ecosystems. In: Heijen G.J. and Schneider T. (eds), Final Report Additional Program Acidification Research, third phase (1991-1994). Rapport 300-05: pp. 64-114 (in Dutch).Google Scholar
  74. Van Dijk W. 1999. Recommendations for fertilization of arable and horticultural crops (in Dutch). PAV-publication 95, Lelystad, the Netherlands, 59 pp.Google Scholar
  75. Van Eck G. and Meijs J.A.C. 1995. Nitrogen losses and nitrogen excesses in Dutch agriculture. Ministeries van LNV, VROM, V&W, Landbouwschap, Centrale Landbouw organisaties (in Dutch).Google Scholar
  76. Van Luijn F. 1997. Nitrogen removal by denitrification in the sediments of a shallow lake, Ph.D. Thesis, Agricultural Unicontent versity Wageningen, Wageningen, the Netherlands.Google Scholar
  77. Vellinga T.V. and Andre G. 1999. Sixty years of Dutch nitrogen fertiliser experiments, an overview of the effects of soil type, fertiliser input, management and developments in time. Neth. J. Agric. Sci. 47: 215–241.Google Scholar
  78. Velthof G.L. and Kuikman P.J. 2000. Mitigation of nitrous oxide emissions from arable land amended with crop residues (in Dutch). Alterra report 114.3, Wageningen, the Netherlands, 80 pp.Google Scholar
  79. Velthof G.L., Oenema O., Postmus J. and Prins W.H. 1990. In-situmeasurements of ammonia volatilization from urea and calcium ammonium nitrate applied to grassland. Meststoffen 1/2: 41-45.Google Scholar
  80. Velthof G.L., Van Beusichem M.L. and Oenema O. 1995. Nitrous oxide fluxes from grassland in the Netherlands: II. Effects of soil type, nitrogen fertilizer application and grazing. Eur. J. Soil Sci. 46: 541-549.Google Scholar
  81. Velthof G.L., Koops J.G., Duyzer J.H. and Oenema O. 1996. Prediction of nitrous oxide fluxes from managed grassland on peat soil using a simple empirical model. Neth. J. Agr. Sci. 44: 339-356.Google Scholar
  82. Velthof G.L., Oenema O., Postma R. and Van Beusichem M.L. 1997. Effect of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland. Nutr. Cycl. Agroecosyst. 46: 257-267.Google Scholar
  83. Velthof G.L., Neeteson J.J., van der Meer H.G. and Oenema O. 2000. Estimate of the net nitrogen mineralisation and biological nitrogen fixation in agricultural soils. Alterra rapport 117, Wageningen, the Netherlands, 35 pp. (in Dutch).Google Scholar
  84. Willems W.J., Vellinga Th.V., Oenema O., Schröder J.J., van der Meer H.G., Fraters B. et al. 2000. Basis for the Dutch derogation request in the context of the European guideline for nitrate. Rapport 718201002, RIVM, Bilthoven, the Netherlands, 102 pp. (in Dutch).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • W. de Vries
    • 1
  • J. Kros
    • 1
  • O. Oenema
    • 1
  • J. de Klein
    • 2
  1. 1.Netherlands
  2. 2.Netherlands

Personalised recommendations