Russian Journal of Genetics

, Volume 39, Issue 4, pp 395–399 | Cite as

Suppression of Nonsense and Frameshift Mutations Obtained by Different Methods for Inactivating the Translation Termination Factor eRF3 in Yeast Saccharomyces cerevisiae

  • S. P. Zadorsky
  • A. S. Borchsenius
  • Yu. V. Sopova
  • V. A. Starzev
  • S. G. Inge-Vechtomov


Mutations in genes of omnipotent nonsense suppressors SUP35 and SUP45 in yeast Saccharomyces cerevisiae encoding translation termination factors eRF3 and eRF1, respectively, and prionization of the eRF3 protein may lead to the suppression of some frameshift mutations (CPC mutations). Partial inactivation of the translation termination factor eRF3 was studied in strains with unstable genetically modified prions and also in transgenic yeast S. cerevisiae strains with the substitution of the indigenous SUP35 gene for its homolog from Pichia methanolica or for a recombinant S. cerevisiae SUP35gene. It was shown that this partial inactivation leads not only to nonsense suppression, but also to suppression of the frameshift lys2-90 mutation. Possible reasons for the correlation between nonsense suppression and suppression of the CPC lys2-90 mutation and mechanisms responsible for the suppression of CPC mutations during inactivation of translation termination factors are discussed.


Saccharomyces Cerevisiae Frameshift Mutation Termination Factor Translation Termination Partial Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inge-Vechtomov, S.G. and Andrianova, V.M., Recessive Super-Suppressors in Yeast, Genetika (Moscow), 1970, vol. 6, no. 11, pp. 103–116.Google Scholar
  2. 2.
    Zhouravleva, G., Frolova, L., Le Goff, X., et al., Termination of Translation in Eukaryotes Is Governed by Two Interacting Polypeptide Chain Release Factors eRF1 and eRF3, EMBO J., 1995, vol. 14, pp. 4065–4072.Google Scholar
  3. 3.
    Frolova, L., Le Goff, X., Rasmussen, H., et al., A Highly Conserved Eukaryotic Protein Family Possessing Properties of Polypeptide Chain Release Factor, Nature, 1994, vol. 372, pp. 701–703.Google Scholar
  4. 4.
    Cox, B.S., ?, a Cytoplasmic Suppressor of Super-Suppression in Yeast, Heredity, 1965, vol. 20, pp. 505–521.Google Scholar
  5. 5.
    Wickner, R.B., Masison, D.C., and Edskes, H.K., [PSI] and [URE3] as Yeast Prions, Yeast, 1995, vol. 11, pp. 1671–1685.Google Scholar
  6. 6.
    Liebman, S.W. and Sherman, F., Extrachromosomal Ψ+ Determinant Suppresses Nonsense Mutations in Yeast, J. Bacteriol., 1979, vol. 139, pp. 1068–1071.Google Scholar
  7. 7.
    Tikhodeev, O.N., Getmanova, E.V., Tikhomirova, V.L., and Inge-Vechtomov, S.G., Ambiguity of Yeast Translation: The Genetic Control and Modification, in Molekulyarnye mekhanizmy geneticheskikh protsessov (Molecular Mechanisms of Genetic Processes), Moscow: Nauka, 1990, pp. 218–228.Google Scholar
  8. 8.
    Ter-Avanesyan, M.D., Dagkesamanskaya, A.R., Kushnirov, V.V., and Smirnov, V.N., The sup35 Omnipotent Suppressor Gene Is Involved in the Maintenance of the Non-Mendelian Determinant [PSI +] in the Yeast Saccharomyces cerevisiae, Genetics, 1994, vol. 137, pp. 671–676.Google Scholar
  9. 9.
    Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., et al., Genesis and Variability of [PSI] Prion Factors in Saccharomyces cerevisiae, Genetics, 1996, vol. 144, pp. 1375–1386.Google Scholar
  10. 10.
    Chernoff, Y.O., Derkach, I.L., and Inge-Vechtomov, S.G., Multicopy sup35 Gene Induces De Novo Appearance of Psi-like Factors in the Yeast Saccharomyces cerevisiae, Curr. Genet., 1993, vol. 24, pp. 268–270.Google Scholar
  11. 11.
    Ter-Avanesyan, M.D., Kushnirov, V.V., Dagkesamanskaya, A.R., et al., Deletion Analysis of the sup35 Gene of the Yeast Saccharomyces cerevisiae Reveals Two Non-Overlapping Functional Regions in the Encoded Protein, Mol. Microbiol., 1993, vol. 7, pp. 683–692.Google Scholar
  12. 12.
    Culbertson, M.R., Charnas, L., Johnson, M.T., and Fink, G.R., Frameshifts and Frameshift Suppressors in Saccharomyces cerevisiae, Genetics, 1977, vol. 86, pp. 745–764.Google Scholar
  13. 13.
    Wilson, P.G. and Culbertson, M.R., SUF12 Suppressor Protein of Yeast: A Fusion Protein Related to EF1??Family Elongation Factor, J. Mol. Biol., 1988, vol. 199, pp. 559–573.Google Scholar
  14. 14.
    Mathison, L. and Culbertson, M.R., Suppressible and Nonsuppressible +1 G-C Base Pair Insertions Induced by ICR-170 at the his4 Locus in Saccharomyces cerevisiae, Mol. Cell. Biol., 1985, vol. 5, pp. 2247–2256.Google Scholar
  15. 15.
    Kulikov, V.N., Tikhodeev, O.N., Forafonov, F.S., et al., Suppression of a Frameshift Mutation as a Result of Partial Inactivation of Translation Termination Factors in Yeast Saccharomyces cerevisiae, Genetika (Moscow), 2001, vol. 37, no. 5, pp. 602–609.Google Scholar
  16. 16.
    Chernoff, Y.O., Lindquist, S.L., Ono, B.-I., et al., Role of the Chaperone Protein Hsp104 in Propagation of the Yeast Prion-like Factor [PSI +], Science, 1995, vol. 268, pp. 880–884.Google Scholar
  17. 17.
    Chernov, Yu.O., Derkach, I.L., Dagkesamanskaya, A.R., et al., Nonsense Suppression Associated with Amplification of the Gene Coding for a Protein Translation Factor, Dokl. Akad. Nauk, 1988, vol. 301, no. 5, pp. 1227–1229.Google Scholar
  18. 18.
    Bonneaud, N., Ozier-Kalogeropoulos, O., Li, G.Y., et al., A Family of Low and High Copy Replicative, Integrative and Single-Stranded S. cerevisiae–E. coli Shuttle Vectors, Yeast, 1991, vol. 7, pp. 609–615.Google Scholar
  19. 19.
    Borchsenius, A.S., Sasnauskas, K., Gedvilaite, A., and Inge-Vechtomov, S.G., Chimeric Yeast Prions with an Unstable Inheritance, Genetika (Moscow), 2002, vol. 38, no. 3, pp. 300–305.Google Scholar
  20. 20.
    Inge-Vechtomov, S.G., Identification of Several Linkage Groups in Yeast Strains of the Peterhof Collection, Genetika (Moscow), 1971, vol. 7, no. 9, pp. 113–124.Google Scholar
  21. 21.
    Zakharov, I.A., Kozhin, S.A., Kozhina, T.N., et al., Sbornik metodik po genetike drozhzhei-sakharomitsetov (Methods of the Genetics of Saccharomycetes), Leningrad: Nauka, 1984.Google Scholar
  22. 22.
    Zadorsky, S.P. and Inge-Vechtomov, S.G., The Pichia methanolica SUP35 Gene Acts as a Recessive Suppressor in the Saccharomyces cerevisiae Genome, Dokl. Akad. Nauk, 1998, vol. 361, no. 6, pp. 825–829.Google Scholar
  23. 23.
    Zadorsky, S.P., Sopova, J.V., and Inge-Vechtomov, S.G., Nonsense Suppression through Expression of sup35 of Pichia methanolica in Saccharomyces cerevisiae, Abstracts of 19th Int. Conf. on Yeast Genetics and Molecular Biology, Curr. Genet., 1999, vol. 35, nos. 3–4, p. 191.Google Scholar
  24. 24.
    Farabaugh, P.J., Programmed Translational Frameshifting, Annu. Rev. Genet., 1996, vol. 30, pp. 507–528.Google Scholar
  25. 25.
    Bonetti, B., Fu, L., Moon, J., and Bedwell, D., The Effi-ciency of Translation Termination Is Determined by a Synergistic Interplay between Upstream and Downstream Sequences in Saccharomyces cerevisiae, J. Mol. Biol., 1995, vol. 251, pp. 334–345.Google Scholar
  26. 26.
    Gesteland, R. and Atkins, J., Recoding: Dynamic Reprogramming of Translation, Annu. Rev. Biochem., 1996, vol. 65, pp. 741–767.Google Scholar
  27. 27.
    Mottagui-Tabar, S., Tuite, M.F., and Isaksson, L.A., The Influence of 5' Codon Context on Translation Termination in Saccharomyces cerevisiae, Eur. J. Biochem., 1998, vol. 257, no. 1, pp. 249–254.Google Scholar
  28. 28.
    Namy, O., Hatin, I., and Rousset, J.P., Impact of the Six Nucleotides Downstream of the Stop Codon on Translation Termination, EMBO Rep., 2001, vol. 2, no. 9, pp. 787–793.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • S. P. Zadorsky
    • 1
  • A. S. Borchsenius
    • 1
  • Yu. V. Sopova
    • 1
  • V. A. Starzev
    • 1
  • S. G. Inge-Vechtomov
    • 1
  1. 1.Department of Genetics and BreedingSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations