Advertisement

Conservation Genetics

, Volume 4, Issue 2, pp 141–155 | Cite as

A genetic mechanism of species replacement in European waterfrogs?

  • Christoph Vorburger
  • Heinz-Ulrich ReyerEmail author
Article

Abstract

Introduced Rana ridibunda currentlyreplace the native waterfrogs R. lessonaeand R. esculenta in several areas ofcentral Europe. The unusual reproductive systemin waterfrogs of the Rana esculentacomplex suggests that this replacement may bedriven by a genetic mechanism: Ranaesculenta, a hybrid between R. ridibundaand R. lessonae, eliminates the lessonae genome from the germline and clonallytransmits the ridibunda genome(hybridogenesis). Hybrids form mixedpopulations with R. lessonae (L-E-system)in which they persist by backcrossing with theparental species. Matings between hybrids areunsuccessful, because their ridibundagenomes contain fixed recessive deleteriousmutations. When introduced into a L-E-system,R. ridibunda can mate with both nativetaxa, producing R. ridibunda offspringwith R. esculenta, and R. esculentaoffspring with R. lessonae (primaryhybridizations). If primary hybrids arehybridogenetic, they produce viable R.ridibunda offspring in matings with otherhybrids, because their clonal genomes areunlikely to share the deleterious allelespresent in the ancient clones. Thus, R.ridibunda will increase in the population atthe expense of both native taxa, eventuallyleaving a pure R. ridibunda population.We provide three lines of evidence for thisprocess from a currently invaded population inSwitzerland: (1) Primary hybridizations takeplace, as roughly 10% of hybrids in thepopulation possess ridibunda genomesderived from the introduced frogs. (2)Hybridogenesis occurs in primary hybrids,although at a low frequency. (3) Many hybrid ×hybrid matings in the population indeed produceviable offspring. Hence, the proposed geneticmechanism appears to contribute to the speciesreplacement, although its importance may belimited.

clonal inheritance hybridization hybridogenesis Rana esculenta complex species invasion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beerli P (1994) Genetic isolation and Calibration of an Average Protein Clock in Western Palearctic Water Frogs of the Aegean Region. PhD thesis, University of Zürich, Switzerland.Google Scholar
  2. Berger L (1967) Embryonal and larval development of F1 generation of green frogs of different combinations. Acta Zool. Cracow, 12, 123–160.Google Scholar
  3. Berger L (1968) Morphology of the F1 generation of various crosses within Rana esculenta complex. Acta Zool. Cracow, 13, 301–324.Google Scholar
  4. Berger L (1976) Hybrids of B2 generation of European water frogs (Rana esculenta complex). Ann. Zool. (Warszawa), 33, 201–214.Google Scholar
  5. Berger L, Uzzell T (1977) Vitality and growth of progeny from different egg size classes of Rana esculenta L. (Amphibia, Salientia). Zool. Poloniae, 26, 291–317.Google Scholar
  6. Berger L, Rybacki M, Hotz H (1994) Artificial fertilization of water frogs. Amphibia-Reptilia, 15, 408–413.Google Scholar
  7. Berger L, Uzzell T, Hotz H (1994) Postzygotic reproductive isolation between Mendelian species of European water frogs. Zool. Poloniae, 39, 209–242.Google Scholar
  8. Binkert J, Borner P, Chen PS (1982) Rana esculenta complex: an experimental analysis of lethality and hybridogenesis. Experientia, 38, 1283–1292.Google Scholar
  9. Blankenhorn HJ, Heusser H, Vogel P (1971) Drei Phänotypen von Grünfröschen aus dem Rana esculenta-Komplex in der Schweiz. Rev. Suisse Zool., 78, 1242–247.Google Scholar
  10. Bucci S, Ragghianti M, Mancino G, Berger L, Hotz H, Uzzell T (1990) Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. J. Exp. Zool., 255, 37–56.Google Scholar
  11. Carmona JA, Sanjur OI, Doadrio I, Machordom A, Vrijenhoek RC (1997) Hybridogenetic reproduction and maternal ancestry of polyploid Iberian fish: The Tropidophoxinellus alburnoides complex. Genetics, 146, 983–993.Google Scholar
  12. Gosner N (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183–190.Google Scholar
  13. Graf JD, Müller WP (1979) Experimental gynogenesis provides evidence of hybridogenetic reproduction in the Rana esculenta complex. Experientia, 35, 1574–1576.Google Scholar
  14. Graf JD, Polls Pelaz M (1989) Evolutionary genetics of the Rana esculenta complex. In: Evolution and Ecology of Unisexual Vertebrates (eds. Dawley RM, Bogart JP), pp. 298–302. The New York State Museum Bulletin 466, Albany, USA.Google Scholar
  15. Grossenbacher K (1988) Verbreitungsatlas der Amphibien der Schweiz. Doc. Faun. Helvetiae, 7, 1–207.Google Scholar
  16. Hebert PDN, Beaton MJ (1993) Methodologies for Allozyme Analysis Using Cellulose Acetate Electrophoresis. Helena Laboratories, Beaumont, TX.Google Scholar
  17. Hellriegel B, Reyer HU (2000) Factors influencing the composition of mixed populations of a hemiclonal hybrid and its sexual host. J. Evol. Biol., 13, 906–918.Google Scholar
  18. Heusser H, Blankenhorn HJ (1973) Crowding-Experimente mit Kaulquappen aus homo-und heterotypischen Kreuzungen der Phänotypen esculenta, lessonae und ridibunda (Rana esculenta-Komplex, Anura, Amphibia). Rev. Suisse Zool., 80, 543–569.Google Scholar
  19. Hofer-Polit D (1998) Aussterben von Rana lessonae und Rana esculenta durch die Ausbreitung von Rana ridibunda. Elaphe, 6, 79–80.Google Scholar
  20. Holenweg Peter AK (2001) Dispersal rates and distances in adult water frogs, Rana lessonae, R. ridibunda, and their hybridogenetic associate R. esculenta. Herpetologica, 57, 449–460.Google Scholar
  21. Holenweg Peter AK, Reyer HU, Abt Tietje G (2002) Species and sex ratio differences in mixed populations of hybridogenetic water frogs: The influence of pond features. Ecoscience, 9, 1–11.Google Scholar
  22. Hotz H (1983) Genic Diversity Among Water frog Genomes Inherited With and Without Recombination. PhD thesis, University of Zürich, Switzerland.Google Scholar
  23. Hotz H, Mancino G, Bucci-Innocenti S, Ragghianti M, Berger L, Uzzell T (1985) Rana ridibunda varies geographically in inducing clonal gametogenesis in interspecies hybrids. J. Exp. Zool., 236, 199–210.Google Scholar
  24. Hotz H, Uzzell T, Berger L (1997) Linkage groups of proteincoding genes in western Palearctic water frogs reveal extensive evolutionary conservation. Genetics, 147, 255–270.Google Scholar
  25. Hotz H, Semlitsch RD, Gutmann E, Guex GD, Beerli P (1999) Spontaneous heterosis for larval life-history traits of hemiclonal frog hybrids. Proc. Natl. Acad. Sci. USA, 96, 2171–2176.Google Scholar
  26. Johnson PTJ, Lunde KB, Ritchie EG, Launer AE (1999) The effect of trematode infection on amphibian limb development and survivorship. Science, 284, 802–804.Google Scholar
  27. Johnson PTJ, Lunde KB, Haight RW, Bowerman J, Blaustein AR (2001) Riebeiroia ondatrae (Trematoda: Digenea) infection induces severe limb malformations in western toads (Bufo boreas). Can. J. Zool., 79, 370–379.Google Scholar
  28. Leslie JF, Vrijenhoek RC (1980) Consideration of Muller's ratchet mechanism through studies of genetic linkage and genomic compatibilities in clonally reproducing Poeciliopsis. Evolution, 34, 1105–1115.Google Scholar
  29. Lynch M (1984) Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q. Rev. Biol., 59, 257–290.Google Scholar
  30. Manchester SJ, Bullock JM (2000) The impacts of non-native species on UK biodiversity and the effectiveness of control. J. Appl. Ecol., 37, 845–864.Google Scholar
  31. Mantovani B, Scali V (1997) Hybridogenesis and androgenesis in the stick insect Bacillus rossius-grandii benazzii (Insecta Phasmatodea). Evolution, 46, 783–796.Google Scholar
  32. Marchesi P, Fournier J, Rey A (1999) Etat des populations de “grenouilles vertes” Rana lessonae, Rana kl. esculenta du Bois de Finges (Salquenen, VS). Bull. Murithienne, 117, 13–22.Google Scholar
  33. Ogielska M (1994) Rana esculenta developmental syndrome: fates of abnormal embryos from the first cleavage until spontaneous death. Zool. Poloniae, 39, 447–459.Google Scholar
  34. Pimm SL (1987) The snake that ate Guam. Trends Ecol. Evol., 2, 293–295.Google Scholar
  35. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Ann. Rev. Ecol. Syst., 27, 83–109.Google Scholar
  36. Schultz RJ (1969) Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am. Nat., 103, 605–619.Google Scholar
  37. Schultz RJ (1973) Unisexual fish: Laboratory synthesis of a “species”. Science, 179, 180–181.Google Scholar
  38. Semlitsch RD, Reyer HU (1992) Performance of tadpoles from the hybridogenetic Rana esculenta complex: Interactions with pond drying and interspecific competition. Evolution, 46, 665–676.Google Scholar
  39. Söderbäck B (1995) Replacement of the native crayfish Astacus astacus by the introduced species Pacifastacus leniusculus in a Swedish lake: Possible causes and mechanisms. Freshwater Biol., 33, 291–304.Google Scholar
  40. Som C, Anholt BR, Reyer HU (2000) The effect of assortative mating on the coexistence of a hybridogenetic waterfrog and its sexual host. Am. Nat., 156, 34–46.Google Scholar
  41. Tunner HG (1974) Die klonale Struktur einer Wasserfrosch-Poplation. Z. Zool. Syst. Evol.-Forsch., 12, 309–314.Google Scholar
  42. Tunner HG, Heppich S (1981) Premeiotic genome exclusion during oogenesis in the common edible frog, Rana esculenta. Naturwissenschaften, 68, 207–208.Google Scholar
  43. Uzzell T, Berger L (1975) Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. Proc. Acad. Nat. Sci. Phila., 127, 13–24.Google Scholar
  44. Uzzell T, Hotz H, Berger L (1980) Genome exclusion in gametogenesis by an interspecific Rana hybrid: Evidence from electrophoresis of individual oocytes. J. Exp. Zool., 214, 251–259.Google Scholar
  45. Vorburger C (2001a) Fixation of deleterious mutations in clonal lineages: Evidence from hybridogenetic frogs. Evolution, 55, 2319–2332.Google Scholar
  46. Vorburger C (2001b) Heterozygous fitness effects of clonally transmitted genomes in waterfrogs. J. Evol. Biol., 14, 602–610.Google Scholar
  47. Vorburger C, Ribi G (1999) Aggression and competition for shelter between a native and an introduced crayfish in Europe. Freshwater Biol., 42, 111–119.Google Scholar
  48. Vrijenhoek RC (1989) Genetic and ecological constraints on the origins and establishment of unisexual vertebrates. In: Evolution and Ecology of Unisexual Vertebrates (eds. Dawley RM, Bogart JP), pp. 24–31. The New York State Museum Bulletin 466, Albany, New York.Google Scholar
  49. Wagner E, Ogielska M (1993) Oogenesis and ovary development in the natural hybridogenetic water frog, Rana esculenta L. II. After metamorphosis until adults. Zool. Jahrb. Allg. Zool., 97, 369–382.Google Scholar
  50. Wetherington JD, Kotora KE, Vrijenhoek RC (1987) A test of the spontaneous heterosis hypothesis for unisexual vertebrates. Evolution, 41, 721–731.Google Scholar
  51. Williamson M (1996) Biological Invasions. Chapman and Hall, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Institute of ZoologyUniversity of ZürichZürichSwitzerland;

Personalised recommendations