, Volume 156, Issue 3, pp 157–162 | Cite as

Genetic relatedness among Filobasidiella species

  • Swarna Sivakumaran
  • Paul Bridge
  • Peter Roberts


The three accepted species of Filobasidiella, F. neoformans, F. depauperata, and F. lutea, are compared morphologically and by molecular analysis. Sequences of the internally transcribed spacer (ITS) and the small subunit (SSU) gene of the ribosomal RNA (rRNA) gene cluster were obtained, and analysed by Neighbor-joining and Maximum parsimony methods. The three species of Filobsidiella are shown to form a single monophyletic clade, rooted by Tremella mesenterica. F. lutea was recovered as a distinct, but closely related taxon with the Filobasidiella clade. This is the first report of DNA sequences from herbarium specimens of F. lutea.

Cryptococcus Filobasidiella internally transcribed spacer (ITS) phylogeny rRNA 18S 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knoke M, Schwesinger G. One hundred years ago: the history of cryptococcosis. In: Greifwald. Medical mycology in the nineteenth century. Mycoses 1994; 37: 229–233.Google Scholar
  2. 2.
    Kwon-Chung KJ. A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 1976; 68: 942–946.Google Scholar
  3. 3.
    Cassadevall A, Perfect JR. Cryptococcus neoformans. Washington: American Society for Microbiology, 1998.Google Scholar
  4. 4.
    Malloch D, Kane J, Lahaie DG. Filobasidiella arachnophila sp. nov. Can J Bot 1978; 56: 1823–1826.Google Scholar
  5. 5.
    Carrol GC. Fungi isolated from gypsy moth egg-masses. Mycotaxon 1987; 29: 299–305.Google Scholar
  6. 6.
    Roberts, P. New Heterobasidiomycetes from Great Britain. Mycotaxon 1997; 63: 19–126.Google Scholar
  7. 7.
    Ginns J, Bernicchia A. Filobasidiella lutea: parasitism of Hypochnicium vellereum. Karstenia 2000; 40: 49–51.Google Scholar
  8. 8.
    Zang M. A new taxon, Filobasidiella xianghuijun Zang, associated with Tremella fuciformis. Edible Fungi of China 1999; 18: 43–44.Google Scholar
  9. 9.
    Kwon-Chung KJ. A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 1975; 67: 1197–1200.Google Scholar
  10. 10.
    Kwon-Chung KJ, Chang YC, Bauer R, Swann EC, Taylor JW, Goel R. The characteristics that differentiate Filobasidiella depauperata from Filobasidiella neoformans. In: Boekhout T, Samson A. eds. Heterobasidiomycetes: systematic and applied. Studies in Mycology. Baarn: CBS, 1995, 67–79.Google Scholar
  11. 11.
    Kubátová, A. New records of micromycetes from Czechoslovakia. II. Filobasidiella depauperata (Petch) Samson, Stalpers et Wijman. Ceská Mykologie 1992; 46: 126–130.Google Scholar
  12. 12.
    Bruns TD, Szaro TM. Rate and mode differences between nuclear and mitochondrial small subunits rRNA genes in mushrooms. Mol Biol Evol 1992; 9: 836–855.Google Scholar
  13. 13.
    Bruns TD, White TJ, Taylor JW. Fungal molecular systematics. Ann Rev Ecol Syst 1991; 22: 525–564.Google Scholar
  14. 14.
    Berbee ML, Yoshimura A, Sugiyama J, Taylor JW. Is Penicillium monophyletic? An evaluation of the phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia 1995; 87: 210–222.Google Scholar
  15. 15.
    Gargas A, Taylor JW. Phylogeny of discomycetes and early radiations of the apothecial Ascomycotina inferred from SSU rDNA sequence data. Exp Mycol 1995; 19: 7–15.Google Scholar
  16. 16.
    Harrington FA, Pfister DH., Potter D, Donoghue MJ. Phylogenetic studies within the Pezizales I. 18S rRNA sequence data and classification. Mycologia 1999; 91: 41–50.Google Scholar
  17. 17.
    Hibbett DS, Vilgalys R. Evolutionary relationships of Lentinus to the Polyporaceae: evidence from restriction analysis of enzymatically amplified ribosomal DNA. Mycologia 1991; 83: 425–439.Google Scholar
  18. 18.
    LoBuglio K, Pitt JI, Taylor JW. Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among sexual Penicillium species in subgenus Biverticillium. Mycologia 1993; 85: 592–604.Google Scholar
  19. 19.
    Feibelman T, Bayman P, Cibula WG. Length variation in the internal transcribed spacer of ribosomal DNA in chanterelles. Mycological Research 1994; 98: 614–618.Google Scholar
  20. 20.
    Moncalvo J-M, Wang H-H, Hseu R-S. Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia 1995; 87: 223–238. 162Google Scholar
  21. 21.
    Lloyd-MacGilp SA, Chambers SM, Dodd JC. Fitter AH, Walker C, Young JPW. Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi. New Phytologist 1996; 133: 103–111.Google Scholar
  22. 22.
    Mitchell TG, White TJ, Taylor JW. Comparison of 5.8S ribosomal DNA sequences among basidiomycetous yeast genera Cystofilobasidium, Filobasidium and Filobasidiella. JMed Vet Mycol 1992; 30: 207–218.Google Scholar
  23. 23.
    Gueho E, Improvisi L, Christen R, De Hoog GS. Phylogenetic relationships of Cryptococus neoformans and somwe related basidiomycetous yeast determined from partial large subunit rRNA. Antonie van Leeuwenhoek 1993; 63: 175–189.Google Scholar
  24. 24.
    Cenis JL. Rapid extraction of fungal DNA for PCR amplification. Nucl Acids Res 1992; 20: 2380.Google Scholar
  25. 25.
    Cubero OF, Crespo A, Fatehi J, Bridge PD. DNA extraction and PCR amplification method suitable for fresh, herbarium and lichenized fungi. Plant Systematics and Evolution 1999; 216: 243–249.Google Scholar
  26. 26.
    Davis LG, Dibner MD, Battey JF. Basic methods in molecular biology. New York: Elsevier, 1986.Google Scholar
  27. 27.
    White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Snisky JJ, White TJ. eds. PCR protocols: a guide to methods and applications. New York: Academic Press, 1990.Google Scholar
  28. 28.
    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the amplification of mycorrhizae and rusts. Mol Ecol 1993; 2: 113–118.Google Scholar
  29. 29.
    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acids Res 1994; 22: 4673–4680.Google Scholar
  30. 30.
    Felsenstein, J. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, 1993.Google Scholar
  31. 31.
    Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HN. ed. Mammalian protein metabolism, Vol. 3. New York: Academic Press, 1969, 21–132.Google Scholar
  32. 32.
    Saitou N, Nei M. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406–425.Google Scholar
  33. 33.
    Felsenstein J. Confidence intervals on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783–791.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Swarna Sivakumaran
    • 1
    • 2
  • Paul Bridge
    • 1
    • 2
  • Peter Roberts
    • 2
  1. 1.School of Biological & Chemical Sciences, Birkbeck CollegeLondonUK
  2. 2.Mycology Section, Royal Botanic GardensKew, SurreyU.K.

Personalised recommendations