Fish Physiology and Biochemistry

, Volume 26, Issue 1, pp 43–56 | Cite as

Spermatogenesis and its endocrine regulation

  • Rüdiger W. Schulz
  • Takeshi Miura


Three major phases compose spermatogenesis: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and spermiogenesis, the restructuring of spermatids into flagellated spermatozoa. The process is fuelled by stem cells that, when dividing, either self-renew or produce spermatogonia that are committed to proliferation, meiosis, and spermiogenesis. During all phases, germ cells are in close contact with and require the structural and functional support of Sertoli cells. In contrast to germ cells, these somatic cells express receptors for sex steroids and follicle-stimulating hormone (FSH), the most important hormones that regulate spermatogenesis. A typical Sertoli cell response to an endocrine stimulus would be to change the release of a growth factor that would then mediate the hormone's effect to the germ cells. Recent studies in the Japanese eel have shown, for example, that in the absence of gonadotropin Sertoli cells produce a growth factor (an orthologue of anti-Müllerian hormone) that restricts stem cell divisions to the self-renewal pathway; also estrogens stimulate stem cell renewal divisions but not spermatogonial proliferation. Gonadotropin or 11-ketotestosterone (11-KT) stimulation, however, induces spermatogonial proliferation, which is in part mimicked by another Sertoli cell-derived growth factor (activin B). Since FSH (besides luteinizing hormone, LH) stimulates steroidogenesis in fish, and since FSH is the only gonadotropin detected in the plasma of sexually immature salmonids, increased FSH signalling may be sufficient to initiate spermatogenesis by activating both Sertoli cell functions and 11-KT production. Another important androgen is testosterone (T), which seems to act via feedback mechanisms that can compromise FSH-dependent signalling or steroidogenesis. The testicular production of T and 11-KT therefore needs to be balanced adequately. Further research is required to elucidate in what way(s) 11-KT stimulates later stages of development, such as entry into meiosis and spermiogenesis. At this period, LH becomes increasingly important for the regulation of androgen production. Results from mammalian models suggest that during the later phases, the control of germ cell apoptosis via Sertoli cell factors is an important regulatory mechanism. In many species, sperm cells cannot fertilize eggs until having passed a maturation process known as capacitation, which includes the acquisition of motility. Progestins that are produced under the influence of LH appear to play an important role in this context, which involves the control of the composition of the seminal plasma (e.g., pH values).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amer, M.A., Miura, T., Miura, C. and Yamauchi, K. 2001. Involvement of sex steroid hormones in the early stages of spermatogenesis in Japanese huchen (Hucho perryi). Biol. Reprod. 65: 1057–1066.PubMedCrossRefGoogle Scholar
  2. Arey, B.J., Stevis, P.E., Deecher, D.C., Shen, E.S., Frail, D.E., Negrovilar, A. and Lopez, F.J. 1997. Induction of promiscuous G protein coupling of the follicle-stimulating hormone (FSH) receptor: A novel mechanism for transducing pleiotropic actions of FSH isoforms. Mol. Endocrinol. 11: 517–526.PubMedCrossRefGoogle Scholar
  3. Bartlett, J.M.S., Kerr, J.B. and Sharpe, R.M. 1986. The effect of selective destruction and regeneration of rat Leydig cells on the intratesticular distribution of testosterone and morphology of the seminiferous epithelium. J. Androl. 7: 240–253.PubMedGoogle Scholar
  4. Billard, R., Fostier, A., Weil, C. and Breton B. 1982. Endocrine control of spermatogenesis in teleost fish. Can. J. Fish Aquat. Sci. 39: 65–79.CrossRefGoogle Scholar
  5. Billard, R. 1969a. La spermatogénèse de Poecilia reticulata I. Estimation du nombre de générations goniales et rendement de la spermatogénèse. Ann. Biol. Anim. Bioch. Biophys. 9: 251–271.CrossRefGoogle Scholar
  6. Billard, R. 1969b. Hypophysectomie et spermatogénèse chez Poecilia reticulata (poisson Cyprinodontidae). C. R. Acad. Sci. 268: 1856–1859.Google Scholar
  7. Billard, R. 1968. Influence de la température sur la durée et l'efficacité de la spermatogénèse du Guppy Poecilia reticulata. C. R. Acad. Sci. 266: 2287–2290.Google Scholar
  8. Bogerd, J., Blomenröhr, M., Andersson, E., Putten van der, H.H.A.G.M., Tensen, C.P., Vischer, H.F., Granneman, J.C.M., Jannssen-Dommerholt, C., Goos, H.J.Th. and Schulz, R.W. 2001. Discrepancy between molecular structure and ligand selectivity of a testicular follicle-stimulating hormone receptor of the African catfish, Clarias gariepinus. Biol. Reprod. 64: 1633–1643.PubMedCrossRefGoogle Scholar
  9. Boitani, C., Stefanini, M., Fragale, A. and Morena, A.R. 1995. Activin stimulates Sertoli cell proliferation in a defined period of rat testis development. Endocrinology 136: 5438–5444.PubMedCrossRefGoogle Scholar
  10. Borg, B. 1994. Androgens in teleost fishes. Comp. Biochem. Physiol. 109C: 219–245.Google Scholar
  11. Bremner, W.J., Millar, M.R., Sharpe, R.M. and Saunders, P.T.K. 1994. Immunohistochemical localization of androgen receptors in the rat testis: Evidence for stage-dependent expression and regulation by androgens. Endocrinology 135: 1227–1234.PubMedCrossRefGoogle Scholar
  12. Budworth, P.R., Senger, P.L., Griswold, M.D. and Donaldson, E.M. 1994 Relationship of plasma steroids to germ cell development and the presence of protamine mRNA in rainbow trout during the induction of spermatogenesis with partially purified salmon gonadotropin. J. Fish Biol. 44: 983–995.CrossRefGoogle Scholar
  13. Cavaco, J.E.B., Bogerd, J., Goos, H.J.T. and Schulz, R.W. 2001. Testosterone inhibits 11–ketotestosterone-induced spermatogenesis in African catfish, Clarias gariepinus. Biol. Reprod. 65: 1807–1812.PubMedCrossRefGoogle Scholar
  14. Cavaco, J.E.B., Blijswijk van, B., Leatherland, J.F., Goos, H.J.T. and Schulz, R.W. 1999. Androgen-induced changes in Leydig cell ultrastructure and steroidogenesis in juvenile African catfish, Clarias gariepinus. Cell Tissue Res. 297: 291–299.PubMedCrossRefGoogle Scholar
  15. Cavaco, J.E.B., Vilrokx, C., Trudeau, V.L., Schulz, R.W. and Goos, H.J.T. 1998. Sex steroids and the initiation of puberty in male African catfish, Clarias gariepinus. Amer. J. Physiol. 44: R1793–R1802.Google Scholar
  16. Cavaco, J.E.B., Vischer, H.F., Lambert, J.G.D., Goos, H.J.T. and Schulz, R.W. 1997. Mismatch between patterns of circulating and testicular androgens in African catfish, Clarias gariepinus. Fish Physiol. Biochem. 17: 155–162.CrossRefGoogle Scholar
  17. Chiarini-Garcia, H. and Russell, L.D. 2001. High-resolution light microscopic characterization of mouse spermatogonia. Biol. Reprod. 65: 1170–1178.PubMedCrossRefGoogle Scholar
  18. Cooke, P.S., Zhao, Y.D. and Bunick, D. 1994. Triiodothyronine inhibits proliferation and stimulates differentiation of cultured neonatal Sertoli cells: Possible mechanism for increased adult testis weight and sperm production induced by neonatal goitrogen treatment. Biol. Reprod. 51: 1000–1005.PubMedCrossRefGoogle Scholar
  19. Cunningham, G.R., Tindall, D.J., Huckins, C. and Means, A.R. 1978. Mechanisms for the testicular hypertrophy which follows hemicastration. Endocrinology 102: 16–23.PubMedCrossRefGoogle Scholar
  20. Dickey, J. T. and Swanson, P. 1998. Effects of sex steroids on gonadotropin (FSH and LH) regulation in coho salmon (Oncorhynchus kisutch). J. Mol. Endocrinol. 21: 291–306.PubMedCrossRefGoogle Scholar
  21. Dobson, S. and Dodd, J.M. 1977. Endocrine control of the testis in the dogfish Scyliorhinus canicula L. II. Histological and ultrastructural changes in the testis after partial hypophysectomy (ventral lobectomy). Gen. Comp. Endocrinol. 32: 53–71.PubMedCrossRefGoogle Scholar
  22. Ewing, H.H. 1972. Spermatogenesis in the zebrafish, Brachydanio rerio. Anat. Rec. 173: 308.Google Scholar
  23. França de, L.R., Ogawa, T., Avarbock, M.R., Brinster, R.L. and Russell, L.D. 1998a. Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol. Reprod. 59: 1371–1377.CrossRefGoogle Scholar
  24. França de, L.R., Parreira, G.G., Gates, R.J. and Russell, L.D. 1998b. Hormonal regulation of spermatogenesis in the hypophysectomized rat: Quantitation of germ-cell population and effect of elimination of residual testosterone after long-term hypophysectomy. J. Androl. 19: 335–340.Google Scholar
  25. Funk, J.D. and Donaldson, E.M. 1972. Induction of precocious sexual maturity in male pink salmon (Oncorhynchus gorbuscha). Can. J. Zool. 50: 1413–1419.PubMedCrossRefGoogle Scholar
  26. Gomez, J.M., Weil, C., Ollitrault, M., LeBail, P.Y., Breton, B. and LeGac, F. 1999. Growth hormone (GH) and gonadotropin subunit gene expression and pituitary and plasma changes during spermatogenesis and oogenesis in rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 113: 413–428.PubMedCrossRefGoogle Scholar
  27. Grier, H.J. and Taylor, R.G. 1998. Testicular maturation and regression in the common snook. J. Fish Biol. 53: 521–542.CrossRefGoogle Scholar
  28. Griswold, M.D. 1998. The central role of Sertoli cells in spermatogenesis. Sem. Cell Dev. Biol. 9: 411–416.CrossRefGoogle Scholar
  29. Ikeuchi, T., Todo, T., Kobayashi. T. and Nagahama, Y. 2001. Two subtypes of androgen and progestogen receptors in fish testes. Comp. Biochem. Physiol. 129B: 449–455.Google Scholar
  30. Johnston, D.S., Russell, L.D., Friel, P.J. and Griswold, M.D. 2001. Murine germ cells do not require functional androgen receptors to complete spermatogenesis following spermatogonial stem cell transplantation. Endocrinology 142: 2405–2408.PubMedCrossRefGoogle Scholar
  31. Kawauchi, H., Suzuki, K., Itoh, H., Swanson, P., Naito, N., Nagahama, Y., Nozaki, M., Nakai, Y. and Itoh, S. 1989. The duality of teleost gonadotropins. Fish Physiol. Biochem. 7: 29–38.CrossRefGoogle Scholar
  32. Khan, I.A., Lopez, E. and Leloup-Hatey, J. 1987. Induction of spermatogenesis and spermiation by a single injection of human chorionic gonadotropin in intact and hypophysectomized immature European eel (Anguilla anguilla L.). Gen. Comp. Endocrinol. 68: 91–103.PubMedCrossRefGoogle Scholar
  33. Khan, I.A., Lopez, E. and Leloup-Hatey, J. 1986. Effects of hypophysectomy on the testis of the European eel (Anguilla anguilla L.). Gen. Comp. Endocrinol. 62: 411–418.PubMedCrossRefGoogle Scholar
  34. Kim, J.J. and Fazleabas, A.T. 1998 Growth Factors. In: Encyclopedia of Reproduction Vol 2. pp. 573–583. Edited by E. Knobil and J.D. Neill, Academic Press, San Diego.Google Scholar
  35. Kobayashi, M., Sorensen, P.W. and Stacey, N.E. 2002. Hormonal and pheromonal control of spawning behavior in the goldfish. Fish Physiol. Biochem, 26: 71–84.CrossRefGoogle Scholar
  36. Kobayashi, M., Aida, K. and Stacey, N.E. 1991. Induction of testis development by implantation of 11–ketotestosterone in female goldfish. Zool. Sci. 8: 389–393.Google Scholar
  37. Krishnamurthy, H., Babu, P.S., Morales, C.R. and Sairam, M.R. 2001. Delay in sexual maturity of the follicle-stimulating hormone receptor knockout malemouse. Biol. Reprod. 65: 522–531.PubMedCrossRefGoogle Scholar
  38. Kumar, R.S., Ijiri, S. and Trant, J.M. 2001. Molecular biology of the channel catfish gonadotropin receptors: 2. Complementary DNA cloning, functional expression, and seasonal gene expression of the follicle-stimulating hormone receptor. Biol. Reprod. 65: 710–717.PubMedCrossRefGoogle Scholar
  39. Kumar, T.R., Wang, Y., Lu, N. and Matzuk, M.M. 1997. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nature Genetics 15: 201–204.PubMedCrossRefGoogle Scholar
  40. Laan, M., Richmond, H., He, C. and Campbell, R.K. 2002. Zebrafish as a model for vertebrate reproduction: Characterization of the first functional zebrafish (Danio rerio) gonadotropin receptor. Gen. Comp. Endocrinol. 125: 349–364.PubMedCrossRefGoogle Scholar
  41. LeGac, F., Loir, M., LeBail, P.Y. and Ollitrault, M. 1996. Insulin-like growth factor (IGF-I) mRNA and IGF-I receptor in trout testis and in isolated spermatogenic and Sertoli cells. Mol. Reprod. Dev. 44: 23–35.CrossRefGoogle Scholar
  42. Lejeune, H., Chuzel, F., Thomas, T., Avallet, O., Habert, R., Durand, P. and Saez, J. 1996. Paracrine regulation of Leydig cells. Annal. d'Endocrinol. 57: 55–63.Google Scholar
  43. Li, H., Papadopoulos, V., Vidic, B., Dym, M. and Culty, M. 1997. Regulation of rat testis gonocyte proliferation by plateletderived growth factor and estradiol: Identification of signaling mechanisms involved. Endocrinology 138: 1289–1298.PubMedCrossRefGoogle Scholar
  44. Loir, M. 2001. Adenosine receptor-adenylate cyclase system in the trout testis: Involvement in the regulation of germ cell proliferation. Mol. Reprod. Dev. 58: 307–317.PubMedCrossRefGoogle Scholar
  45. Loir, M., Sourdaine, P., Mendis-Handagama, S.M.L.C. and Jégou, B. 1995. Cell-cell interactions in the testis of teleosts and elasmobranchs. Microsc. Res. Techn. 32: 533–552.CrossRefGoogle Scholar
  46. Loir, M. 1994. In vitro approach to the control of spermatogonia proliferation in the trout. Mol. Cell. Endocrinol. 102: 141–150.PubMedCrossRefGoogle Scholar
  47. Loir, M. and LeGac, F. 1994. Insulin-like growth factor I and II binding and action on DNA synthesis in rainbow trout spermatogonia and spermatocytes. Biol. Reprod. 51: 1154–1163.PubMedCrossRefGoogle Scholar
  48. Loir, M., Cauty, C., Planquette, P. and LeBail, P.Y. 1989. Comparative study of the male reproductive tract in seven families of South-American catfishes. Aquat. Living Resour. 2: 45–56.CrossRefGoogle Scholar
  49. Lyon, M.F., Glenister, P.H. and Lamoreux, M.L. 1975. Normal spermatozoa from androgen resistant germ cells of chimaeric mice and the role of androgen in spermatogenesis. Nature 258: 620–622.PubMedCrossRefGoogle Scholar
  50. Mather, J.P., Attie, K.M., Woodruff, T.K., Rice, G.C. and Phillips, D.M. 1990. Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology 127: 3206–3214.PubMedCrossRefGoogle Scholar
  51. Matta, S.L.P., Vilela, D.A.R., Godinho, H.P. and França, L.R. 2002. The goitrogen 6–n-propyl-2–thiouracil (PTU) given during testis development increases Sertoli and germ cell numbers per cyst in fish: the tilapia (Oreochromis niloticus) model. Endocrinology 143: 970–978.PubMedCrossRefGoogle Scholar
  52. Mayer, I., Borg, B. and Schulz, R. 1990. Conversion of 11–ketoandrostenedione to 11–ketotestosterone by blood cells of six fish species. Gen. Comp. Endocrinol. 77: 70–74.PubMedCrossRefGoogle Scholar
  53. Miura, T., Miura, C., Konda, Y. and Yamauchi, K. 2002. Spermatogenesis-preventing substance in Japanese eel. Development 129: 2689–2697.PubMedGoogle Scholar
  54. Miura, T., Miura, C., Ohta, T., Nader, M.R., Todo, T. and Yamauchi, K. 1999. Estradiol-17β stimulates the renewal of spermatogonial stem cells in males. Biochem. Biophys. Res. Com. 264: 230–234.PubMedCrossRefGoogle Scholar
  55. Miura, T., Kawamura, S., Miura, C. and Yamauchi, K. 1997. Impaired spermatogenesis in the Japanese eel, Anguilla japonica: Possibility for the existence of factors that regulate entry of germ cells into meiosis. Dev. Growth. Differ. 39: 685–691.PubMedCrossRefGoogle Scholar
  56. Miura, T., Kasugai, T., Nagahama, Y. and Yamauchi, K. 1995a. Acquisition of potential for sperm motility in vitro in Japanese eel Anguilla japonica. Fisheries Sci. 61: 533–534.Google Scholar
  57. Miura, T., Miura, C., Yamauchi, K. and Nagahama, Y. 1995b. Human recombinant activin induces proliferation of spermatogonia in vitro in the Japanese eel Anguilla japonica. Fisheries Sci. 63: 434–437.Google Scholar
  58. Miura, T., Yamauchi, K., Takahashi, H., and Nagahama, Y. 1992. The role of hormones in the acquisition of sperm motility in salmonid fish. J. Exp. Zool. 261: 359–363.PubMedCrossRefGoogle Scholar
  59. Miura, T., Yamauchi, K., Takahashi, H. and Nagahama, Y. 1991a. Involvement of steroid hormones in gonadotropin-induced testicular maturation in male Japanese eel (Anguilla japonica). Biomed. Res. 12: 241–248.Google Scholar
  60. Miura, T., Yamauchi, K., Nagahama, Y. and Takahashi, H. 1991b. Induction of spermatogenesis in male Japanese eel, Anguilla japonica, by a single injection of human chorionic gonadotropin. Zool. Sci. 8: 63–73.Google Scholar
  61. Miura, T., Yamauchi, K., Takahashi, H. and Nagahama, Y. 1991c. Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc. Natl. Acad. Sci. USA 88: 5774–5778.PubMedCrossRefGoogle Scholar
  62. Miwa, S., Yan, L. and Swanson, P. 1994. Localization of two gonadotropin receptors in the salmon gonad by in vitro ligand autoradiography. Biol. Reprod. 59: 629–642.CrossRefGoogle Scholar
  63. Morisawa, S. and Morisawa, M. 1988. Induction of potential for sperm motility by bicarbonate and pH in rainbow trout and chum salmon. J. Exp. Biol. 136: 13–22.PubMedGoogle Scholar
  64. Morisawa, S. and Morisawa, M. 1986. Acquisition of potential for sperm motility in rainbow trout and chum salmon. J. Exp. Biol. 126: 89–96.PubMedGoogle Scholar
  65. Nader, M.R., Miura, T., Ando, N., Miura, C. and Yamauchi, K. 1999. Recombinant human insulin-like growth factor I stimulates all stages of 11–ketotestosterone-induced spermatogenesis in the Japanese eel, Anguilla japonica, in vitro. Biol. Reprod. 61: 944–947.PubMedCrossRefGoogle Scholar
  66. Oba, Y., Hirai, T., Yoshiura, Y., Yoshikuni, M., Kawauchi, H. and Nagahama, Y. 1999a. Cloning, functional characterization, and expression of a gonadotropin receptor cDNA in the ovary and testis of amago salmon (Oncorhynchus rhodurus). Biochem. Biophys. Res. Commun. 263: 584–590.PubMedCrossRefGoogle Scholar
  67. Oba, Y., Hirai, T., Yoshiura, Y., Yoshikuni, M., Kawauchi, H. and Nagahama, Y. 1999b. The duality of fish gonadotropin receptors: Cloning and functional characterization of a second gonadotropin receptor cDNA expressed in the ovary and testis of amago salmon (Oncorhynchus rhodurus). Biochem. Biophys. Res. Commun. 265: 366–371.PubMedCrossRefGoogle Scholar
  68. O'Donnell, L., Robertson, K.M., Jones, M.E. and Simpson, E.R. 2001. Estrogen and spermatogenesis. Endocrine Rev. 22: 289–318.CrossRefGoogle Scholar
  69. Ohta, H., Ikeda, K. and Izawa, T. 1997. Increase in concentrations of potassium and bicarbonate ions promote acquisition of motility in vitro by Japanese eel spermatozoa. J. Exp. Zool. 277: 171–180.CrossRefGoogle Scholar
  70. Okuzawa, K. 2002. Puberty in teleosts. Fish Physiol. Biochem. 26: 31–41.CrossRefGoogle Scholar
  71. Patiño, R. and Sullivan, C.V. 2002. Ovarian follicle growth, maturation, and ovulation in teleost fishes. Fish Physiol. Biochem. 26: 57–70.CrossRefGoogle Scholar
  72. Payne, A.H. and Youngblood, G.L. 1995. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol. Reprod. 52: 217–225.PubMedCrossRefGoogle Scholar
  73. Planas, J. V. and Swanson, P. 1995. Maturation-associated changes in the response of the salmon testis to the steroidogenic actions of gonadotropins (GTH I and GTH II) in vitro. Biol. Reprod. 52: 697–704.PubMedCrossRefGoogle Scholar
  74. Plant, T.M. and Marshall, G.R. 2001. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr. Rev. 22: 764–786.PubMedCrossRefGoogle Scholar
  75. Prat, F., Sumpter, J. P. and Tyler, C. R. 1996. Validation of radioimmunoassays for two salmon gonadotropins (GTH I and GTH II) and their plasma concentrations throughout the reproductive cycle in male and female rainbow trout (Oncorhynchus mykiss). Biol. Reprod. 54: 1375–1382.PubMedCrossRefGoogle Scholar
  76. Quérat, B., Tonnerre-Doncarli, C., Genies, F. and Salmon, C. 2001. Duality of gonadotropins in gnathostomes. Gen. Comp. Endocrinol. 124: 308–314.PubMedCrossRefGoogle Scholar
  77. Robertson, K.M., O'Donnell, L., Jones, M.E.E., Meachem, S.J., Boon, W.C., Fisher, C.R., Graves, K.H., McLachlan, R.I. and Simpson, E.R. 1999. Impairment of spermatogenesis in mice lacking a functional aromatase (Cyp 19) gene. Proc. Natl. Acad. Sci. U.S.A. 96: 7986–7991.PubMedCrossRefGoogle Scholar
  78. Robertson, O.H. 1958. Accelerated development of testis after unilateral gonadectomy, with observations on normal testis of rainbow trout. Fish. Bull. 58: 9–30.Google Scholar
  79. Rooij de, D. G. and Russell, L.D. 2000. All you wanted to know about spermatogonia but were afraid to ask. J. Andrology. 21: 776–798.Google Scholar
  80. Russel, L.D., Ettlin, R.A., Sinha Hikim, A.P. and Clegg E.D. 1990. Histological and histopathological evaluation of the testis. Cache River Press (Clearwater, Florida, U.S.A.), pp. 1–37.Google Scholar
  81. Schulz, R.W., Bogerd, J. and Goos, H.J.Th. 1999. Spermatogenesis and its endocrine regulation. In: Proceedings of the Sixth International Symposium on the Reproductive Physiology of Fish. pp. 225–232. Edited by Norberg, B., Kjesbu, O.S., Taranger, G.L., Andersson, E., Stefansson, S.O., Fish Symp 99, Bergen.Google Scholar
  82. Schulz, R. and Blüm, V. 1990. Steroid secretion of rainbow trout testis in vitro: variation during the reproductive cycle. Gen. Comp. Endocrinol. 80: 189–198.PubMedCrossRefGoogle Scholar
  83. Schulz, R. 1984. Serum levels of 11–oxotestosterone in male and 17β-estradiol in female rainbow trout (Salmo gairdneri) during the first reproductive cycle. Gen. Comp. Endocrinol. 56: 111–120.PubMedCrossRefGoogle Scholar
  84. Shan, L.X., Bardin, C.W. and Hardy, M.P. 1997. Immunohistochemical analysis of androgen effects on androgen receptor expression in developing Leydig and Sertoli cells. Endocrinology 138: 1259–1266.PubMedCrossRefGoogle Scholar
  85. Shibata, N. and Hamaguchi, S. 1988. Evidence for the sexual bipotentiality of spermatogonia in the fish, Oryzias latipes. J. Exptl. Zool. 245: 71–77.CrossRefGoogle Scholar
  86. Siller, S. 2001. Sexual selection and the maintenance of sex. Nature 411: 689–692.PubMedCrossRefGoogle Scholar
  87. Sinha-Hikim, A.P.S., Rajavashisth, T.B., Hikim, I.S., Lue, Y.H., Bonavera, J.J., Leung, A., Wang, C. and Swerdloff, R.S. 1997. Significance of apoptosis in the temporal and stage-specific loss of germ cells in the adult rat after gonadotropin deprivation. Biol. Reprod. 57: 1193–1201.PubMedCrossRefGoogle Scholar
  88. Socorro, S., Power, D.M., Olsson, P.-E. and Canario, A.V.M. 2000. Two estrogen receptors expressed in the teleost fish, Sparus aurata: cDNA cloning, characterization and tissue distribution. J. Endocrinol. 166: 293–306.PubMedCrossRefGoogle Scholar
  89. Sperry, T.S. and Thomas, P. 1999. Characterization of two nuclear androgen receptors in Atlantic croaker: Comparison of their biochemical properties and binding specificities. Endocrinology 140: 1602–1611.PubMedCrossRefGoogle Scholar
  90. Sprando, R.L., Heidinger, R.C. and Russell, L.D. 1988. Spermiogenesis in the bluegill (Lepomis macrochirus): a study of cytoplasmic events including cell volume changes and cytoplasmic elimination. J. Morphol. 198: 165–177.PubMedCrossRefGoogle Scholar
  91. Sprando, R.L. and Russell, L.D. 1987. Germ cell-somatic cell relationships: a comparative study of intercellular junctions during spermatogenesis in selected non-mammalian vertebrates. Scanning Microsc. 1: 1249–1255.PubMedGoogle Scholar
  92. Swanson, P., Bernard, M., Nozaki, M., Suzuki, K., Kawauchi, H. and Dickhoff, W.W. 1989. Gonadotropins I and II in juvenile coho salmon. Fish Physiol. Biochem. 7: 169–176.CrossRefGoogle Scholar
  93. Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. 2002. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech. Dev. 113: 29–39.PubMedCrossRefGoogle Scholar
  94. Takeo, J. and Yamashita, S. 2000. Rainbow trout androgen receptor-α fails to distinguish between any of the natural androgens tested in transactivation assay, not just 11–ketotestosterone and testosterone. Gen. Comp. Endocrinol. 117: 200–206.PubMedCrossRefGoogle Scholar
  95. Takeo, J. and Yamashita, S. 1999. Two distinct isoforms of cDNA encoding rainbow trout androgen receptors. J. Biol. Chem. 274: 5674–5680.PubMedCrossRefGoogle Scholar
  96. Themmen, A.P.N., Kraaij, R. and Grootegoed, J.A. 1994. Regulation of gonadotropin receptor gene expression. Mol. Cell. Endocrinol. 100: 15–19.PubMedCrossRefGoogle Scholar
  97. Uchida, D., Yamashita, M., Kitano, T. and Iguchi, T. 2002. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J. Exptl. Biol. 205: 711–718.Google Scholar
  98. Vischer, H.F., Teves, A.C.C., Ackermans, J.C.M., van Dijk, W., Schulz, R.W. and Bogerd, J. 2003. Cloning and spatiotemporal expression of the follicle-stimulating hormone β subunit complementary DNA in the African Catfish (Clarias gariepinus). Biol. Reprod. 68 (in press).Google Scholar
  99. Viveiros, A.T., Eding, E.H. and Komen, J. 2001. Effects of 17α-methyltestosterone on seminal vesicle development and semen release response in the African catfish, Clarias gariepinus. Reproduction 122: 817–827.PubMedCrossRefGoogle Scholar
  100. Wu, C., Patiño, R., Davis, K.B. and Chang, X. 2001. Localization of estrogen receptor α and β RNA in germinal and nongerminal epithelia of channel catfish testis. Gen. Comp. Endocrinol. 124: 12–20.PubMedCrossRefGoogle Scholar
  101. Watanabe, A. and Onitake, K. 1995. Changes in the distribution of fibroblast growth factor in the teleostean testis during spermatogenesis. J. Exptl. Zool. 272: 475–483.CrossRefGoogle Scholar
  102. Yamazaki, F. and Donaldoson, E.M. 1969. Involvement of gonadotropin and steroid hormones in the spermiation of the gold-fish (Carassius auratus). Gen. Comp. Endocrinol. 12: 491–497.PubMedCrossRefGoogle Scholar
  103. Yan, L.G., Swanson, P. and Dickhoff, W.W. 1992. A two-receptor model for salmon gonadotropins (GTH-I and GTH-II). Biol. Reprod. 47: 418–427.PubMedCrossRefGoogle Scholar
  104. Zhao, G.Q., Deng, K., Labosky, P.A., Liaw, L. and Hogan, B.L.M. 1996. The gene encoding bone morphogenetic protein 8B (BMP8B) is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev. 10: 1657–1669.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Rüdiger W. Schulz
    • 1
  • Takeshi Miura
    • 2
  1. 1.Faculty of Biology, Research Group EndocrinologyUniversity of UtrechtUtrechtThe Netherlands (Phone
  2. 2.Faculty of Agriculture, Laboratory of Fish Reproductive PhysiologyEhime UniversityMatsuyamaJapan (Phone

Personalised recommendations