Molecular Biology

, Volume 37, Issue 2, pp 260–272 | Cite as

Prokaryotic DNA Methyltransferases: The Structure and the Mechanism of Interaction with DNA

  • E. S. Gromova
  • A. V. Khoroshaev


The review considers current views on the function of DNA methyltransferases (MTases) that belong to prokaryotic type II restriction–modification systems. A commonly accepted classification of MTases is described along with their primary and tertiary structures and molecular mechanisms of their specific interaction with DNA (including methylation). MTase inhibitors are also considered. Special emphasis is placed on the flipping of the target heterocyclic base out of the double helix and on the methods employed in its analysis. Base flipping is a fundamentally new type of DNA conformational changes and is also of importance in the case of other DNA-operating enzymes. MTases show unique sequence homology, and are similar in structure of functional centers and in the mechanism of methylation. These data contribute to the understanding of the general biological significance of methylation, since prokaryotic and eukaryotic MTases are structurally and functionally similar.

DNA methyltransferases structure homology mechanism of DNA methylation S-adenosyl L-methionine DNA methyltransferase inhibitors target base flipping prokaryotes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeltsch A. 2002. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 3, 274–293.Google Scholar
  2. 2.
    Razin A. 1998. CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J. 17, 4905–4908.Google Scholar
  3. 3.
    Baylin S.B., Herman J.G. 2000. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174.Google Scholar
  4. 4.
    Newell-Price J., Clark A.J., King P. 2000. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab. 11, 142–148.Google Scholar
  5. 5.
    Lichtenstein A.V., Kisseljova N.P. 2001. Methylation and carcinogenesis. Biokhimiya. 66, 293–317.Google Scholar
  6. 6.
    Bird A. 1999. DNA methylation de novo. Science. 286, 2287–2288.Google Scholar
  7. 7.
    Wilson G.G. 1991. Organization of restriction-modification systems. Nucleic Acids Res. 19, 2539–2566.Google Scholar
  8. 8.
    Heitman J. 1993. On the origins, structures and functions of restriction-modification enzymes. Genet. Eng. (NY). 15, 57–108.Google Scholar
  9. 9.
    Pingoud A., Jeltsch A. 1997. Recognition and cleavage of DNA type-II restriction endonucleases. Eur. J. Biochem. 246, 1–22.Google Scholar
  10. 10.
    Murray N.E. 2000. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 64, 412–434.Google Scholar
  11. 11.
    Anderson J.E. 1993. Restriction endonucleases and modification methylases. Current Opin. Struct. Biol. 3, 24–30.Google Scholar
  12. 12.
    Matsuo K., Silke J., Gramatikoff K., Schaffner W. 1994. The CpG-specific methylase SssI has topoisomerase activity in the presence of Mg 2+. Nucleic Acids Res. 22, 5354–5359.Google Scholar
  13. 13.
    Dubey A.K., Bhattacharya S.K. 2002. The N-terminus of m5C-DNA methyltransferase MspI is involved in its topoisomerase activity. Eur. J. Biochem. 269, 2491–2497.Google Scholar
  14. 14.
    Szybalski W., Kim S.C., Hasan N., Podhajska A.J. 1991. Class-IIS restriction enzymes--a review. Gene. 100, 13–26.Google Scholar
  15. 15.
    Friedrich T., Fatemi M., Gowhar H., Leismann O., Jeltsch A. 2000. Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase. Biochim. Biophys. Acta. 1480, 145–159.Google Scholar
  16. 16.
    Gunn J.S., Stein D.C. 1997. The Neisseria gonorrhoeae S.NgoVIII restriction/modification system: a type IIs. system homologous to the Haemophilus parahaemolyticus HphI restriction/modification system. Nucleic Acids Res. 25, 4147–4152.Google Scholar
  17. 17.
    Sapranauskas R., Sasnauskas G., Lagunavicius A., Vilkaitis G., Lubys A., Siksnys V. 2000. Novel subtype of type IIs restriction enzymes. BfiI endonuclease exhibits similarities to the EDTA-resistant nuclease Nuc of Salmonella typhimurium. J. Biol. Chem. 275, 30878–30885.Google Scholar
  18. 18.
    Tran P.H., Korszun Z.R., Cerritelli S., Springhorn S.S., Lacks S.A. 1998. Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of Streptococcus pneumoniae bound to S-adenosylmethionine. Structure. 6, 1563–1575.Google Scholar
  19. 19.
    Roberts R.J., Macelis D. 2001. REBASE-restriction enzymes and methylases. Nucleic Acids Res. 29, 268–269.Google Scholar
  20. 20.
    Posfai J., Bhagwat A.S., Posfai G., Roberts R.J. 1989. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 17, 2421–2435.Google Scholar
  21. 21.
    Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R.J., Wilson G.G. 1994. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 22, 1–10.Google Scholar
  22. 22.
    Lauster R., Trautner T.A., Noyer-Weidner M. 1989. Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J. Mol. Biol. 206, 305–312.Google Scholar
  23. 23.
    Malone T., Blumenthal R.M., Cheng X. 1995. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253, 618–632.Google Scholar
  24. 24.
    Bujnicki J.M., Radlinska M. 1999. Molecular evolution of DNA-(cytosine-N4) methyltransferases: evidence for their polyphyletic origin. Nucleic Acids Res. 27, 4501–4509.Google Scholar
  25. 25.
    Gritsenko O.M., Mikhailov S.N., Efimtseva E.V., Van Aerschot A., Herdewijn P., Gromova E.S. 2000. Probing the MvaI methyltransferase region that interacts with DNA: affinity labeling with the dialdehyde-containing DNA duplexes. Nucleosides Nucleotides Nucleic Acids. 19, 1805–1820.Google Scholar
  26. 26.
    Gritsenko O.M., Koudan E.V., Mikhailov S.N., Ermolinsky B.S., Van Aerschot A., Herdewijn P., Gromova E.S. 2002. Affinity modification of EcoRII DNA methyltransfearse by the dialdehyde-containing DNA duplexes: mapping the enzyme region that interacts with DNA. Nucleosides Nucleotides Nucleic Acids. 21, 753–764.Google Scholar
  27. 27.
    Koudan E.V., Subach O.M., Korshunova G.A., Romanova E.A., Eritja R., Gromova E.S. 2002. DNA duplexes containing photoactive derivatives of 2'-deoxyuridine as photocrosslinking probes for EcoRII DNA methyltransferase-substrate interaction. J. Biomol. Struct. Dyn. 20, 421–428.Google Scholar
  28. 28.
    Gong W., O'Gara M., Blumenthal R.M., Cheng X. 1997. Structure of PvuII DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res. 25, 2702–2715.Google Scholar
  29. 29.
    Schroeder S.G., Samudzi C.T. 1997. Structural studies of EcoRII methylase: exploring similarities among methylases. Protein Eng. 10, 1385–1393.Google Scholar
  30. 30.
    Wyszynski M.W., Gabbara S., Kubareva E.A., Romanova E.A., Oretskaya T.S., Gromova E.S., Shabarova Z.A., Bhagwat A.S. 1993. The cysteine conserved among DNA cytosine methylases is required for methyl transfer, but not for specific DNA binding. Nucleic Acids Res. 21, 295–301.Google Scholar
  31. 31.
    Karyagina A.S., Lunin V.G., Levtchenko I.Ya., Labbe D., Brousseau R., Lau P.C., Nikolskaya I.I. 1995. The SsoII and NlaX DNA methyltransferases: overproduction and functional analysis. Gene. 157, 93–96.Google Scholar
  32. 32.
    Gopal J., Yebra M.J., Bhagwat A.S. 1994. DsaV methyltransferase and its isoschizomers contain a conserved segment that is similar to the segment in HhaI methyltransferase that is in contact with DNA bases. Nucleic Acids Res. 22, 4482–4488.Google Scholar
  33. 33.
    Vilkaitis G., Dong A., Weinhold E., Cheng X., Klimasauskas S. 2000. Functional roles of the conserved threonine 250 in the target recognition domain of HhaI DNA methyltransferase. J. Biol. Chem. 275, 38722–38730.Google Scholar
  34. 34.
    Dong A., Yoder J.A., Zhang X., Zhou L., Bestor T.H., Cheng X. 2001. Structure of human Dnmt2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 29, 439–448.Google Scholar
  35. 35.
    Wu J.C., Santi D.V. 1987. Kinetic and catalytic mechanism of HhaI methyltransferase. J. Biol. Chem. 262, 4778–4786.Google Scholar
  36. 36.
    Chen L., MacMillan A.M., Verdine G.L. 1993. Mutational separation of DNA binding from catalysis in a DNA cytosine methyltransferase. J. Am. Chem. Soc. 115, 5318–5319.Google Scholar
  37. 37.
    Vilkaitis G., Merkiene E., Serva S., Weinhold E., Klimasauskas S. 2001. The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of HhaI methyltransferase. J. Biol. Chem. 276, 20924–20934.Google Scholar
  38. 38.
    Osterman D.G., DePillis G.D., Wu J.C., Matsuda A., Santi D.V. 1988. 5-Fluorocytosine in DNA is a mechanism-based inhibitor of HhaI methylase. Biochemistry. 27, 5204–5210.Google Scholar
  39. 39.
    Ho D.K., Wu J.C., Santi D.V., Floss H.G. 1991. Stereochemical studies of the C-methylation of deoxycytidine catalyzed by HhaI methylase and the N-methylation of deoxyadenosine catalyzed by EcoRI methylase. Arch. Biochem. Biophys. 284, 264–269.Google Scholar
  40. 40.
    Pogolotti A.L., Ono A., Subramaniam R., Santi D.V. 1988. On the mechanism of DNA-adenine methylase. J. Biol. Chem. 263, 7461–7464.Google Scholar
  41. 41.
    Scavetta R.D., Thomas C.B., Walsh M.A., Szegedi S., Joachimiak A., Gumport R.I., Churchill M.E. 2000. Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases. Nucleic Acids Res. 28, 3950–3961.Google Scholar
  42. 42.
    Jeltsch A., Christ F., Fatemi M., Roth M. 1999. On the substrate specificity of DNA methyltransferases. Adenine-N6 DNA methyltransferases also modify cytosine residues at position N4. J. Biol. Chem. 274, 19538–19544.Google Scholar
  43. 43.
    Jeltsch A. 2001. The cytosine N4-methyltransferase M.PvuII also modifies adenine residues. Biol. Chem. 382, 707–710.Google Scholar
  44. 44.
    Klimasauskas S., Kumar S., Roberts R.J., Cheng X. 1994. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 76, 357–369.Google Scholar
  45. 45.
    Reinisch K.M., Chen L., Verdine G.L., Lipscomb W.N. 1995. The crystal structure of HaeIII methyltransferase. convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell. 82, 143–153.Google Scholar
  46. 46.
    Labahn J., Granzin J., Schluckebier G., Robinson D.P., Jack W.E., Schildkraut I., Saenger W. 1994. Three-dimensional structure of the adenine-specific DNA methyltransferase M.TaqI in complex with the cofactor S-adenosylmethionine. Proc. Natl. Acad. Sci. USA. 91, 10957–10961.Google Scholar
  47. 47.
    Goedecke K., Pignot M., Goody R.S., Scheidig A.J., Weinhold E. 2001. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Nature Struct. Biol. 8, 121–125.Google Scholar
  48. 48.
    Cheng X., Roberts R.J. 2001. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res. 29, 3784–3795.Google Scholar
  49. 49.
    Kiss A., Posfai G., Zsurka G., Rasko T., Venetianer P. 2001. Role of DNA minor groove interactions in substrate recognition by the M.SinI and M.EcoRII DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 29, 3188–3194.Google Scholar
  50. 50.
    Beck C., Cranz S., Solmaz M., Roth M., Jeltsch A. 2001. How does a DNA interacting enzyme change its specificity during molecular evolution? A site-directed mutagenesis study at the DNA binding site of the DNA-(adenine-N6)-methyltransferase EcoRV. Biochemistry. 40, 10956–10965.Google Scholar
  51. 51.
    Roberts R.J., Cheng X. 1998. Base flipping. Annu. Rev. Biochem. 67, 181–198.Google Scholar
  52. 52.
    Holz B., Klimasauskas S., Serva S., Weinhold E. 1998. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res. 26, 1076–1083.Google Scholar
  53. 53.
    Allan B.W., Reich N.O. 1996. Targeted base stacking disruption by the EcoRI DNA methyltransferase. Biochemistry. 35, 14757–14762.Google Scholar
  54. 54.
    Malygin E.G., Evdokimov A.A., Zinoviev V.V., Ovechkina L.G., Lindstrom W.M., Reich N.O., Schlagman S.L., Hattman S. 2001. A dual role for substrate S-adenosyl-L-methionine in the methylation reaction with bacteriophage T4 Dam DNA-[N6-adenine]-methyltransferase. Nucleic Acids Res. 29, 2361–2369.Google Scholar
  55. 55.
    Szegedi S.S., Reich N.O., Gumport R.I. 2000. Substrate binding in vitro and kinetics of RsrI [N6-adenine] DNA methyltransferase. Nucleic Acids Res. 28, 3962–3971.Google Scholar
  56. 56.
    Reddy V.R., Rao D.N. 2000. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence. J. Mol. Biol. 298, 597–610.Google Scholar
  57. 57.
    Jeltsch A., Roth M., Friedrich T. 1999. Mutational analysis of target base flipping by the EcoRV adenine-N6 DNA methyltransferase. J. Mol. Biol. 285, 1121–1130.Google Scholar
  58. 58.
    Klimasauskas S., Roberts R.J. 1995. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 23, 1388–1395.Google Scholar
  59. 59.
    Serva S., Weinhold E., Roberts R.J., Klimasauskas S. 1998. Chemical display of thymine residues flipped out by DNA methyltransferases. Nucleic Acids Res. 26, 3473–3479.Google Scholar
  60. 60.
    Holz B., Dank N., Eickhoff J.E., Lipps G., Krauss G., Weinhold E. 1999. Identification of the binding site for the extrahelical target base in N6-adenine DNA methyltransferases by photo-cross-linking with duplex oligode-oxyribonucleotides containing 5-iodouracil at the target position. J. Biol. Chem. 274, 15066–15072.Google Scholar
  61. 61.
    Evdokimov A.A., Zinoviev V.V., Malygin E.G., Schlagman S.L., Hattman S. 2002. Bacteriophage T4 Dam DNA-[N6-adenine]methyltransferase. Kinetic evidence for a catalytically essential conformational change in the ternary complex. J. Biol. Chem. 277, 279–286.Google Scholar
  62. 62.
    Reich N.O., Mashhoon N. 1991. Kinetic mechanism of the EcoRI DNA methyltransferase. Biochemistry. 30, 2933–2939.Google Scholar
  63. 63.
    Gowher H., Jeltsch A. 2000. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA. J. Mol. Biol. 303, 93–110.Google Scholar
  64. 64.
    Surby M.A., Reich N.O. 1996. Contribution of facilitated diffusion and processive catalysis to enzyme efficiency: implications for the EcoRI restriction-modification system. Biochemistry. 35, 2201–2208.Google Scholar
  65. 65.
    von Hippel P.H., Berg O.G. 1989. Facilitated target location in biological systems. J. Biol. Chem. 264, 675–678.Google Scholar
  66. 66.
    Pingoud A., Jeltsch A. 2001. Structure and function of type II restriction endonucleases. Nucleic Acids Res. 29, 3705–3727.Google Scholar
  67. 67.
    Dubey A.K., Roberts R.J. 1992. Sequence-specific DNA binding by the MspI DNA methyltransferase. Nucleic Acids Res. 20, 3167–3173.Google Scholar
  68. 68.
    Malygin E.G., Petrov N.A., Gorbunov Y.A., Kossykh V.G., Hattman S. 1997. Interaction of the phage T4 Dam DNA-[N6-adenine] methyltransferase with oligonucleotides containing native or modified (defective) recognition sites. Nucleic Acids Res. 25, 4393–4399.Google Scholar
  69. 69.
    Zabel U., Schreck R., Baueuerle P.A. 1991. DNA binding of purified transcription factor NF-κκB. Affinity, specificity, Zn2+ dependence, and differential half-site recognition. J. Biol. Chem. 266, 252–260.Google Scholar
  70. 70.
    Cal S., Connolly B.A. 1996. The EcoRV modification methylase causes considerable bending of DNA upon binding to its recognition sequence GATATC. J. Biol. Chem. 271, 1008–1015.Google Scholar
  71. 71.
    Dubey A.K., Bhattacharya S.K. 1997. Angle and locus of the bend induced by the MspI DNA methyltransferase in a sequence-specific complex with DNA. Nucleic Acids Res. 25, 2025–2029.Google Scholar
  72. 72.
    Garcia R.A., Bustamante C.J., Reich N.O. 1996. Sequence-specific recognition of cytosine C5 and adenine N6 DNA methyltransferases requires different deformations of DNA. Proc. Natl. Acad. Sci. USA. 93, 7618–7622.Google Scholar
  73. 73.
    Renbaum P., Razin A. 1995. Footprint analysis of M.SssI and M.HhaI methyltransferases reveals extensive interactions with the substrate DNA backbone. J. Mol. Biol. 248, 19–26.Google Scholar
  74. 74.
    Rasko T., Finta C., Kiss A. 2000. DNA bending induced by DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 28, 3083–3091.Google Scholar
  75. 75.
    Nelson H.C., Bestor T.H. 1996. Base eversion and shuffling by DNA methyltransferases. Chem. Biol. 3, 419–423.Google Scholar
  76. 76.
    Klimasauskas S., Szyperski T., Serva S., Wuthrich K. 1998. Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution. EMBO J. 17, 317–324.Google Scholar
  77. 77.
    Allan B.W., Beechem J.M., Lindstrom W.M., Reich N.O. 1998. Direct real time observation of base flipping by the EcoRI DNA methyltransferase. J. Biol. Chem. 273, 2368–2373.Google Scholar
  78. 78.
    Bergerat A., Guschlbauer W. 1990. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli. Nucleic Acids Res. 18, 4369–4375.Google Scholar
  79. 79.
    Bhattacharya S.K., Dubey A.K. 1999. Kinetic mechanism of cytosine DNA methyltransferase MspI. J. Biol. Chem. 274, 14743–14749.Google Scholar
  80. 80.
    Marzabal S., DuBoris S., Thielking V., Cano A., Eritja R., Guschlbauer W. 1995. Dam methylase from Escherichia coli: kinetic studies using modified DNA oligomers: hemimethylated substrates. Nucleic Acids Res. 23, 3648–3655.Google Scholar
  81. 81.
    O'Gara M., Roberts R.J., Cheng X. 1996. A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase. J. Mol. Biol. 263, 597–606.Google Scholar
  82. 82.
    Szczelkun M.D., Connolly B.A. 1995. Sequence-specific binding of DNA by the EcoRV restriction and modification enzymes with nucleic acid and cofactor analogues. Biochemistry. 34, 10724–10733.Google Scholar
  83. 83.
    Reich N.O., Olsen C., Osti F., Murphy J. 1992. In vitro specificity of EcoRI DNA methyltransferase. J. Biol. Chem. 267, 15802–15807.Google Scholar
  84. 84.
    Driscoll J.S., Marquez V.E., Plowman J., Liu P.S., Kelley J.A., Barchi J.J. Jr. 1991. Antitumor properties of 2(1H)-pyrimidinone riboside (zebularine) and its fluorinated analogues. J. Med. Chem. 34, 3280–3284.Google Scholar
  85. 85.
    Zingg J.M., Shen J.C., Yang A.S., Rapoport H., Jones P.A. 1996. Methylation inhibitors can increase the rate of cytosine deamination by (cytosine-5)-DNA methyltransferase. Nucleic Acids Res. 24, 3267–3275.Google Scholar
  86. 86.
    Sharath A.N., Weinhold E., Bhagwat A.S. 2000. Reviving a dead enzyme: cytosine deaminations promoted by an inactive DNA methyltransferase and an S-adenosylmethionine analogue. Biochemistry. 39, 14611–14616.Google Scholar
  87. 87.
    Wyszynski M., Gabbara S., Bhagwat A.S. 1994. Cytosine deaminations catalyzed by DNA cytosine methyltransferases are unlikely to be the major cause of mutational hot spots at sites of cytosine methylation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 91, 1574–1578.Google Scholar
  88. 88.
    Friedman S. 1985. The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA(cytosine-5)methyltransferases. J. Biol. Chem. 260, 5698–5705.Google Scholar
  89. 89.
    Gabbara S., Bhagwat A.S. 1995. The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor. Biochem. J. 307, 87–92.Google Scholar
  90. 90.
    Sheikhnejad G., Brank A., Christman J.K., Goddard A., Alvarez E., Ford H. Jr, Marquez V.E., Marasco C.J., Sufrin J.R., O'Gara M., Cheng X. 1999. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J. Mol. Biol. 285, 2021–2034.Google Scholar
  91. 91.
    Taylor C., Ford K., Connolly B.A., Hornby D.P. 1993. Determination of the order of substrate addition to MspI DNA methyltransferase using a novel mechanism-based inhibitor. Biochem. J. 291, 493–504.Google Scholar
  92. 92.
    Hurd P.J., Whitmarsh A.J., Baldwin G.S., Kelly S.M., Waltho J.P., Price N.C., Connolly B.A., Hornby D.P. 1999. Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone. J. Mol. Biol. 286, 389–401.Google Scholar
  93. 93.
    Zhou L., Cheng X., Connolly B., Dickman M., Hurd P., Hornby D. 2002. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol. 321, 591–599.Google Scholar
  94. 94.
    Kumar S., Horton J.R., Jones G.D., Walker R.T., Roberts R.J., Cheng X. 1997. DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by HhaI methyltransferase. Nucleic Acids Res. 25, 2773–2783.Google Scholar
  95. 95.
    Ruiz-Herrera J., Ruiz-Medrano R., Dominguez A. 1995. Selective inhibition of cytosine-DNA methylases by polyamines. FEBS Lett. 357, 192–196.Google Scholar
  96. 96.
    Heithoff D.M., Sinsheimer R.L., Low D.A., Mahan M.J. 1999. An essential role for DNA adenine methylation in bacterial virulence. Science. 284, 967–970.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • E. S. Gromova
    • 1
  • A. V. Khoroshaev
    • 1
  1. 1.Chemical DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations