Journal of Statistical Physics

, Volume 90, Issue 5–6, pp 1441–1447 | Cite as

Nonperiodic Long-Range Order for Fast-Decaying Interactions at Positive Temperatures

  • Aernout C. D. van Enter
  • Jacek Miekisz
  • Miloš Zahradník


We present the first example of an exponentially decaying interaction which gives rise to nonperiodic long-range order at positive temperatures.

Classical lattice-gas models nonperiodic ground and Gibbs states long-range order Thue–Morse sequences stratified Gibbs states quasi-crystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Aubry, Weakly periodic structures and example, J. Phys. (Paris) Coll. C3-50:97 (1989).Google Scholar
  2. 2.
    Beyond Quasicrystals(les Houches 1994), F. Axel and D. Gratias, eds. (Springer, Berlin etc., 1994).Google Scholar
  3. 3.
    J. Bricmont and J. Slawny, Phase transitions in systems with a finite number of dominant ground states, J. Stat. Phys. 54:89 (1989).Google Scholar
  4. 4.
    E. I. Dinaburg and Ya. G. Sinai, An analysis of the ANNNI model by the Peierls contour method, Commun. Math. Phys. 98:119 (1985).Google Scholar
  5. 5.
    E. I. Dinaburg, A. E. Mazel, and Ya. G. Sinai, The ANNNI model and contour models with interaction, Sov. Sci. Rev. C Math/Phys. 6:113 (1987).Google Scholar
  6. 6.
    R. L. Dobrushin, Gibbs states describing coexistence of phases for a three-dimensional Ising model, Th. Prob. Appl. 17:582 (1972).Google Scholar
  7. 7.
    R. L. Dobrushin and S. B. Shlosman, The problem of translation invariance of Gibbs states at low temperatures, Sov. Sci. Rev. 5:53 (1985).Google Scholar
  8. 8.
    A. C. D. van Enter and J. Miękisz, Breaking of periodicity at positive temperatures, Comm. Math. Phys. 134:647 (1990).Google Scholar
  9. 9.
    A. C. D. van Enter and J. Miękisz, How should one define a (weak) crystal? J. Stat. Phys. 66:1147 (1992).Google Scholar
  10. 10.
    A. C. D. van Enter and B. Zegarliński, Non-periodic long-range order for one-dimensional pair interactions, J. Phys. A, Math. Gen. 30:501 (1997).Google Scholar
  11. 11.
    M. E. Fisher and W. Selke, Low temperature analysis of the axial next-nearest neighbour Ising model near its multiphase point, Phil. Trans. Royal Soc. 302:1 (1981).Google Scholar
  12. 12.
    M. E. Fisher and A. M. Szpilka, Domain-wall interactions. I. General features and phase diagrams for spatially modulated phases, Phys. Rev. B36:644 (1987).Google Scholar
  13. 13.
    C. Gardner, J. Miękisz, C. Radin, and A. C. D. van Enter. Fractal symmetry in an Ising model, J. Phys. A. Math. Gen. 22:L1019 (1989).Google Scholar
  14. 14.
    P. Holický and M. Zahradník, Stratified low temperature phases of stratified spin models: a general Pirogov-Sinai approach, preprint 97-616 in Austin Mathematical Physics Archive.Google Scholar
  15. 15.
    S. Kakutani, Ergodic theory of shift transformations, Proc. Fifth Berkeley Sympos. Math. Statist. Probability II, 405:4414 (1967).Google Scholar
  16. 16.
    M. Keane, Generalized Morse sequences, Zeit. Wahr. 10:335 (1968).Google Scholar
  17. 17.
    L. Laanait and N. Moussa, Rigorous study of the spin-1/2 Ising model in a layered magnetic field at low temperatures, J. Phys. A: Math. Gen. 30:1059 (1997).Google Scholar
  18. 18.
    J. Miękisz, Quasicrystals. Microscopic Models of Non-periodic Structures, Leuven Lecture Notes in Mathematical and Theoretical Physics, Vol. 5, (Leuven University Press, 1993).Google Scholar
  19. 19.
    J. Miękisz and C. Radin, The third law of thermodynamics, Mod. Phys. Lett. 1:61 (1987).Google Scholar
  20. 20.
    J. Miękisz and C. Radin, The unstable chemical structure of the quasicrystalline alloys, Phys. Lett. 119A:133 (1986).Google Scholar
  21. 21.
    J. Miękisz, A microscopic model with quasicrystalline properties, J. Stat. Phys. 58:1137 (1990).Google Scholar
  22. 22.
    J. Miękisz, Stable quasicrystalline ground states, J. Stat. Phys. 88:691 (1997).Google Scholar
  23. 23.
    J. Miękisz, An ultimate frustration in classical lattice-gas models, J. Stat. Phys. 90:285 (1998).Google Scholar
  24. 24.
    C. Radin, Disordered ground states of classical lattice models, Rev. Math. Phys. 3:125 (1991).Google Scholar
  25. 25.
    C. Radin, Low temperature and the origin of crystalline symmetry, Int. J. Mod. Phys. B 1:1157 (1987).Google Scholar
  26. 26.
    C. Radin and L. S. Schulman, Periodicity and classical ground states, Phys. Rev. Lett. 51:621 (1983).Google Scholar
  27. 27.
    C. Radin, Crystals and quasicrystals: a lattice gas model, Phys. Lett. 114A:381 (1986).Google Scholar
  28. 28.
    D. Ruelle, Do turbulent crystals exist? Physica 113A:619 (1982).Google Scholar
  29. 29.
    D. Schechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translation symmetry, Phys. Rev. Lett. 53:1951 (1984).Google Scholar
  30. 30.
    M. Sénéchal, Quasicrystals and Geometry(Cambridge University Press, 1995).Google Scholar
  31. 31.
    Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results(Pergamon Press, Oxford, 1982).Google Scholar
  32. 32.
    J. Slawny, Low-temperature properties of classical lattice systems: phase transitions and phase diagrams, In Phase Transitions and Critical Phenomena, vol. 11, pp. 128-205, C. Domb and J. L. Lebowitz, eds. (Academic Press, 1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Aernout C. D. van Enter
    • 1
  • Jacek Miekisz
    • 2
  • Miloš Zahradník
    • 3
  1. 1.Institute for Theoretical Physics, Rijksuniversiteit GroningenGroningenThe Netherlands;
  2. 2.Institute of Applied Mathematics and MechanicsWarsaw UniversityWarsawPoland;
  3. 3.Faculty of Mathematics and PhysicsCharles University PraguePragueCzech Republic;

Personalised recommendations