Advertisement

Design and Implementation of High-Performance RNS Wavelet Processors Using Custom IC Technologies

  • Javier Ramírez
  • Uwe Meyer-Bäse
  • Fred Taylor
  • Antonio García
  • Antonio Lloris
Article

Abstract

The design of high performance, high precision, real-time digital signal processing (DSP) systems, such as those associated with wavelet signal processing, is a challenging problem. This paper reports on the innovative use of the residue number system (RNS) for implementing high-end wavelet filter banks. The disclosed system uses an enhanced index-transformation defined over Galois fields to efficiently support different wavelet filter instantiations without adding any extra cost or additional look-up tables (LUT). A selection of a small wordwidth modulus set are the keys for attaining low-complexity and high-throughput. An exhaustive comparison against existing two's complement (2C) designs for different custom IC technologies was carried out. Results reveal a performance improvement of up to 100% for high-precision RNS-based systems. These structures demonstrated to be well suited for field programmable logic (FPL) assimilation as well as for CBIC (cell-based integrated circuit) technologies.

discrete wavelet transform RNS arithmetic custom integrated circuit field-programmable logic devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Sodersterand, W.K. Jenkins, G.A. Jullien, and F.J. Taylor, Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. New York: IEEE Press, 1986.Google Scholar
  2. 2.
    Altera Corporation, FLEX10K Embedded Programmable Logic Device Family, ver. 4.1, 2001.Google Scholar
  3. 3.
    Xilinx Inc., The Programmable Logic Data Book, 1999.Google Scholar
  4. 4.
    U. Meyer-Baese, J. Buros, W. Trautmann, and F. Taylor, “Fast Implementation of OrthogonalWavelet Filterbanks Using Field-Programmable Logic,” in Proc. of the 1999 IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, vol. 4, pp. 2119-2122.CrossRefGoogle Scholar
  5. 5.
    A. García, U. Meyer-Bäse, A. Lloris, and F. Taylor, “RNS Implementation of FIR Filters based on Distributed Arithmetic Using Field-Programmable Logic,” in Proc. of the 1999 IEEE International Symposium on Circuits and Systems, 1999, vol. 1, pp. 486-489.Google Scholar
  6. 6.
    J. Ramírez, A. García, U. Meyer-Baese, F. Taylor, and A. Lloris, “Implementation of RNS-Based Distributed Arithmetic Discrete Wavelet Transform Architectures Using Field-Programmable Logic,” Journal of VLSI Signal Processing (Special Issue on Computer Arithmetic and Applications), 2003, vol. 33, pp. 171-190.CrossRefMATHGoogle Scholar
  7. 7.
    J. Ramírez, A. García, U. Meyer-Bäse, F. Taylor, P.G. Fern´andez, and A. Lloris, “Design of RNS-Based Distributed Arithmetic DWT Filterbanks,” in Proc. of the 2001 International Conference on Acoustics, Speech and Signal Processing ICASSP 2001, May 2001, vol. 2, pp. 1193-1196.Google Scholar
  8. 8.
    J. Ramírez, A. García, P. G. Fern´andez, L. Parrilla, and A. Lloris, “RNS-FPL Merged Architectures for the Orthogonal DWT,” Electronics Letters, vol. 36, no. 14, 2000, pp. 1198-1199.CrossRefGoogle Scholar
  9. 9.
    V. Hamann and M. Sprachmann, “Fast Residual Arithmetic with FPGAs,” in Proc. of theWorkshop on Design Methodologies for Microelectronics, Slovakia, Sept. 1995.Google Scholar
  10. 10.
    E. Di Claudio, F. Piazza, and G. Orlandi, “Fast Combinational RNS Processors for DSP Applications,” IEEE Transactions on Computers, May 1995, pp. 624-633.Google Scholar
  11. 11.
    H. Safiri, H. Ahamadi, G. Jullien, and V. Dimitrov, “Design and FPGA Implementation of Systolic FIR Filters Using the Fermat ALU,” Proc. of the Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 1996.Google Scholar
  12. 12.
    U. Meyer-Bäse, A. García, and F. Taylor, “Implementation of a Communications Channelizer Using FPGAs and RNS Arithmetic,” Journal of VLSI Signal Processing, May 2001, vol. 28, no. 1/2, pp. 115-128.CrossRefMATHGoogle Scholar
  13. 13.
    J. Ramírez, P.G. Fern´andez, U. Meyer-Bäse, F. Taylor, A. García, and A. Lloris, “Index-based RNS DWT Architectures for Custom IC Designs,” in Proc. of the IEEE Workshop on Signal Processing Systems SiPS 2001, Oct. 2001, pp. 70-79.Google Scholar
  14. 14.
    F. Taylor, “Large Moduli Multipliers for Signal Processing,” IEEE Transactions on Circuits and Systems, vol. CAS-28, no. 7, 1981, pp. 731-736.CrossRefGoogle Scholar
  15. 15.
    G.A. Jullien, “Implementation of Multiplication, Modulo a Prime Number, with Applications to Number Theoretic Transforms”, IEEE Trans. on Computer, vol. C-29, no. 10, 1980,pp. 899-905.CrossRefGoogle Scholar
  16. 16.
    D. Radhakrishnan and Y. Yuan, “Fast and Highly Compact RNS Multipliers,” International Journal of Electronics, vol. 70, no. 2, 1991, pp. 281-293.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A.A. Hiasat, “New Efficient Structure for a Modular Multiplier for RNS,” IEEE Transactions on Computers, vol. 49, no. 2, 2000, pp. 170-174.MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, 1995.Google Scholar
  19. 19.
    G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesly-Cambridge Press, 1997.Google Scholar
  20. 20.
    K.K. Parhi and T. Nishitani, “VLSI Architectures for Discrete Wavelet Transforms,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 1, June 1993, pp. 191-202.CrossRefGoogle Scholar
  21. 21.
    J. Fridman and E.S. Manolakos, “Distributed Memory and Control VLSI Architectures for the 1-D Discrete Wavelet Transform,” VLSI Signal Processing, vol. VII, 1994, pp. 388-397.Google Scholar
  22. 22.
    C. Chakrabarti and M. Vishwanath, “Efficient Realizations of the Discrete and Continuous Wavelet Transform: From Single Chip Implementations to Mappings on SIMD Array Computers,” IEEE Transactions on Signal Processing, vol. 43, March 1995, pp. 759-771.CrossRefGoogle Scholar
  23. 23.
    M. Vishwanath, R.M. Owens, and M.J. Irwin, “VLSI Architectures for the DiscreteWavelet Transform,” IEEE Transactions on Circuits and Systems II, vol. 42, no. 5, May 1995, pp. 305-316.CrossRefMATHGoogle Scholar
  24. 24.
    T.C. Denk and K.K. Parhi, “VLSI Architectures for Lattice Structure Based Orthogonal Discrete Wavelet Transforms,” IEEE Transactions on Circuits and Systems II, vol. 44, no. 2, Feb. 1997, pp. 129-132.CrossRefGoogle Scholar
  25. 25.
    F. Marino, “A 'Double-Face' Bit-Serial Architecture for the 1-D Discrete Wavelet Transform,” IEEE Transactions on Circuits and Systems II, vol. 47, no. 1, Jan. 2000, pp. 65-71.CrossRefGoogle Scholar
  26. 26.
    J. Pihl and E.J. Aas, “A Multiplier and Squared Generator for High Performance DSP Applications,” in Proc. of the 39th Midwest Symposium on Circuits and Systems, 1996.Google Scholar
  27. 27.
    M. Griffin, F.J. Taylor, and M. Sousa, “New scaling algorithms for the Chinese Remainder Theorem,” in Proc. of the 22nd Asilomar Conf. on Signals, Syst. and Comp., CA, 1988.Google Scholar
  28. 28.
    J. Ramírez, A. García, P.G. Fern´andez, L. Parrilla, and A. Lloris, “ANewArchitecture to Compute the Discrete Cosine Transform using the Quadratic Residue Number System,” in Proc. of the 2000 International Symposium on Circuits and Systems, vol. 5, May 2000, pp. 321-324.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Javier Ramírez
    • 1
  • Uwe Meyer-Bäse
    • 2
  • Fred Taylor
    • 3
  • Antonio García
    • 1
  • Antonio Lloris
    • 1
  1. 1.Department of Electronics and Computer TechnologyUniversity of GranadaSpain
  2. 2.Department of Electrical and Computer EngineeringFlorida State UniversityTallahasseeUSA
  3. 3.High-Speed Digital Architecture LaboratoryUniversity of FloridaGainesvilleUSA

Personalised recommendations