, Volume 489, Issue 1–3, pp 21–27

Physiological indicators of nutrient deficiency in phytoplankton in southern Chilean lakes

  • Gail S. Steinhart
  • Gene E. Likens
  • Doris Soto


We assessed the nutrient status of phytoplankton in 28 lakes in southern Chile using two types of physiological indicators: specific alkaline phosphatase activity, and the elemental composition (carbon, nitrogen, and phosphorus) of seston. Alkaline phosphatase activity ranged from 0.001 to 0.11 μmol P μg chl−1 h−1, with P-deficiency indicated in about one-half the study lakes. C:N ranged from 3.9 to 24, C:P ranged from 86 to 919, and N:P ranged from 8.7 to 99. C:P and N:P ratios greater than the Redfield ratio were common, suggesting P deficiency in many of the lakes. C:N ratios were not generally indicative of N deficiency. Previous studies have suggested N may be the primary limiting nutrient in southern Chilean lakes, but our results indicate that P should not be discounted as a limiting nutrient.

nutrient limitation phytoplankton Chile seston composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alaback, P. B., 1991, Comparative ecology of temperate rainforests of the Americas along analagous climatic gradients. Rev. Chilena Hist. Nat. 64: 339–412.Google Scholar
  2. Axler, R. P. & C. J. Owen, 1994, Measuring chlorophyll and phaeophytin: whom should you believe? Lake Reservoir Manage. 8(2): 143–151.Google Scholar
  3. Baigún, C. & M.C. Marinone, 1995, Cold-temperate lakes of South America: do they fit northern hemisphere models? Arch. Hydrobiol. 135: 23–51.Google Scholar
  4. Burns, C. W., 1991, New Zealand lakes research, 1967–1991, N.Z. J. Mar. Freshwat. Res. 25: 359–379.Google Scholar
  5. Currie, D. J., E. Bentzen & J. Kalff, 1986, Does algal-bacterial phosphorus partitioning vary among lakes? A comparative study of orthophosphate uptake and alkaline phosphatase activity in freshwater. Can. J. Fish. aquat. Sci. 43: 311–318.Google Scholar
  6. Dillon, F. J. & F. H. Rigler, 1974, The phosphorus–chlorophyll relationship in lakes. Limnol. Oceanogr. 19(5): 767–773.Google Scholar
  7. Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990, Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Can. J. Fish. aquat. Sci. 47(7): 1468–1477.Google Scholar
  8. Galloway, J. N., H. I. Levy & P. S. Kasibhatla, 1994, Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen. Ambio 23(2): 120–123.Google Scholar
  9. Goldman, C. R., 1988, Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultraoligotrophic Lake Tahoe, California-Nevada. Limnol. Oceaogr. 33(6): 1321–1333.Google Scholar
  10. Healey, F. P. & L. L. Hendzel, 1979, Fluorometric measurement of alkaline phosphatase activity in algae. Freshwat. Biol. 9: 429–439.Google Scholar
  11. Hecky, R. E. & P. Kilham, 1988, Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33(4 part 2): 796–822.Google Scholar
  12. Hedin, L. O. & H. Campos, 1991, Importance of small streams in understanding and comparing watershed ecosystem processes. Rev. Chilena Histor. Nat. 64: 583–596.Google Scholar
  13. Melack, J. M., P. Kilham & T. R. Fisher, 1982, Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia 52: 321–326.Google Scholar
  14. Menzel, D. W. & N. Corwin. 1965, The measurement of total phosphorus in seawater based on the liberation of the orgainically bound fraction by persulfate oxidation. Limnol. Oceanogr. 10: 280–283.Google Scholar
  15. Muller, M. J., 1982, Selected Climatic Data for a Global Set of Standard Stations for Vegetation Science. DrW. Junk Publishers, The Hague.Google Scholar
  16. Organzacion de los Estados Americanos, 1969, Distribucion de la poblacion urbana y rural (Chile). IREN-CORFO.Google Scholar
  17. Pettersson, K., 1980, Alkaline phosphatase activity and algal surplus phosphorus as phosphorus-deficiency indicators. Arch. Hydrobiol. 89(1/2): 54–87.Google Scholar
  18. Redfield, A. C. 1958, The biological control of chemical factors in the environment. Am. Sci. 205–221.Google Scholar
  19. Reynolds, C.S., 1984, The Ecology of Freshwater Phytoplankton. Cambridge, New York.Google Scholar
  20. Schindler, D. W., 1978, Factors regulating phytoplankton production in the world's fresh waters. Limnol, Oceanogr. 23(3): 478–486.Google Scholar
  21. Smith, V. H., 1990, Nitrogen, phophorus, and nitrogen fixation in lacustrine and freshwater ecosystems. Limnol. Oceanogr. 35: 1852–1859.Google Scholar
  22. Solorzano, L. and J.H. Sharp, 1980, Determination of total dissolved nitrogen in natural-waters. Limnol. Oceanogr. 25(4): 751–754.Google Scholar
  23. Soto, D. & H. Campos, 1995, Los lagos oligotróficos asociados al bosque templado húmedo del sur de Chile. In Armesto, J. J., M. Kalin and C. Villagrán (eds), Ecología del Bosque Chileno. Universitaria, Santiago, Chile: 317–334.Google Scholar
  24. Soto, D. & J. G. Stockner, 1996, The temperate rainforest lakes of Chile and Canada: In Lawford, R. G., P. B. Alaback & E. Fuentes (eds), Comparative ecology and sensitivity to anthropocentric change. High Latitude Rain Forests and Associated Ecosystems of the West Coast of the Americas: Climate, Hydrology, Ecology, and Conservation. Springer, New York: 266–280.Google Scholar
  25. Soto, D., H. Campos, W. Steffen, O. Parra & L. Zuniga, 1994. The Torres del Paine lake district (Chilean Patagonia): A case of potentially N-limited lakes and ponds. Arch. Hydrobiol. Suppl. 99(1/2): 181–197.Google Scholar
  26. Steinhart, G. S., 1996, Nutrient Limitation of Primary Production and Nutrient Deficiency in Phytoplankton in Southern Chilean Lakes. M.S. Thesis. Cornell University.Google Scholar
  27. Steinhart, G. S., G. E. Likens & D. Soto, 1999, Nutrient limitation in Lago Chaiquenes (Parque Nacional Alerce Andino, Chile): evidence from nutrient enrichment experiments and physiological assays. Rev. Chilena Hist. Nat. 72: 559–568.Google Scholar
  28. Strickland, J. D. H. & T. R. Parsons, 1968, A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada Bulletin.Google Scholar
  29. Vollenweider, R. A., 1968, Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, With Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication. OECD.Google Scholar
  30. Weaire, J. & R. Manly, 1996, Chemical water quality studies in the Central Patagonian Region of Chile following the eruption of Volcan Hudson. Hydrobiologia 331: 161–166.Google Scholar
  31. White, E., 1983, Lake eutrophication in New Zealand–a comparison with other countries of the Organisation for Economic Co-operation and Development. N.Z. J. Mar. Freshwat. Res. 17: 437–444.Google Scholar
  32. White, E., K. Law, G. Payne & S. Pickmere, 1985, Nutrient demand and availability among planktonic communities–an attempt to assess nutrient limitation to plant growth in 12 central volcanic plateau lakes. N.Z. J. Mar. Freshwat. Res. 19: 49–62.Google Scholar
  33. Wurtsbaugh, W. A., W. F. Vincent, R. Alfaro Tapia, C. L. Vincent & P. J. Richerson, 1985, Nutrient limitation of algal growth and nitrogen fixation in a tropical alpine lake, Lake Titicaca (Peru/Bolivia). Freshwat. Biol. 15: 185–195.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Gail S. Steinhart
    • 1
    • 2
  • Gene E. Likens
    • 2
  • Doris Soto
    • 4
  1. 1.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  2. 2.Institute of Ecosystem StudiesMillbrookUSA
  3. 3.Cornell UniversityIthacaUSA
  4. 4.Facultad de Pesquerías y OceanografíaUniversidad Austral de ChilePuerto MonttChile

Personalised recommendations