Environmental Biology of Fishes

, Volume 66, Issue 1, pp 9–14

Effects of Hatchery Rearing on Brain Structures of Rainbow Trout, Oncorhynchus mykiss

  • Michael P. Marchetti
  • Gabrielle A. Nevitt


In this study, we contrast brain morphology from hatchery and wild reared stocks to examine the hypothesis that in salmonid fishes, captive rearing produces changes in brain development. Using rainbow trout, Oncorhynchus mykiss, as a model, we measured eight regions of the salmonid brain to examine differences between wild and hatchery reared fish. We find using multiple analysis of covariance (MANCOVA), analysis of covariance (ANCOVA) and discriminant function analysis (DFA) that the brains of hatchery reared fish are relatively smaller in several critical measures than their wild counterparts. Our work may suggest a mechanistic basis for the observed vulnerability of hatchery fish to predation and their general low survival upon release into the wild. Our results are the first to highlight the effects of hatchery rearing on changes in brain development inbreak fishes.

salmonidae domestic fishes brain size neurobiology conservation discriminant function analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Barngrover, B.G. 1990. Rainbow trout strains in California state hatcheries. California Fish and Game 76: 91-102.Google Scholar
  2. Berejikian, B.A., E.P. Tezak, S.L. Schroder, C.M. Knudsen & J.J. Hard. 1997. Reproductive behavioral interactions between wild and captively reared coho salmon (Oncorhynchus kisutch). ICES J. Mar. Sci. 54: 1040-1050.Google Scholar
  3. Brandstatter, R. & K. Kortschal. 1990. Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei), roach (Rutilus rutilus), bream (Abramis brama), common carp (Cyprinus carpio) and saber carp (Pelecus cultratus). Brain Behav. Evol. 35: 195-211.Google Scholar
  4. Brannon, E.L. 1993. The perpetual oversight of hatchery programs. Fish. Res. (Amst.) 18: 19-27.Google Scholar
  5. Ebinger, P. & M. Rohrs. 1995. Domestication and plasticity of brain organization in mallards (Anas platyrhynchos). J. Brain Res. 36: 219-228.Google Scholar
  6. Fleming, I.A. & M.R. Gross. 1993. Breeding success of hatchery and wild coho salmon (Oncorhynchus kisutch) in competition. Ecol. App. 3: 230-245.Google Scholar
  7. Fleming, I.A. & S. Einum. 1997. Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication. ICES J. Mar. Sci. 54: 1051-1063.Google Scholar
  8. Fleming, I.A., A. Lamberg & B. Jonsson. 1997. Effects of early experience on the reproductive performance of Atlantic salmon. Behav. Evol. 8: 470-480.Google Scholar
  9. Gross, M.R. 1998. One species with two biologies: Atlantic salmon (Salmo salar) in the wild and in aquaculture. Can. J. Fish. Aquat. Sci. 55(suppl.): 131-144.Google Scholar
  10. Hard J.J., B.A. Berejikian, E.P. Tezak, S.L. Schroder, C.M. Knudsen & L.T. Parker. 2000. Evidence for morphometric differentiation of wild and captively reared adult coho salmon: a geometric analysis. Env. Biol. Fish. 58: 61-73.Google Scholar
  11. Healy, S. & T. Guilford. 1990. Olfactory bulb size and nocturnality in birds. Evolution 44: 339-346.Google Scholar
  12. Huber, R. & M.K. Rylander. 1992. Brain morphology and turbidity preference in Notropis and related genera (Cyprinidae, Teleosteii). Env. Biol. Fish. 33: 153-165.Google Scholar
  13. Huber, R., M.J. Staaden, L.S. Kaufman & K.F. Liem. 1997. Microhabitat use, trophic patterns and the evolution of brain structures in African cichlids. Brain Behav. Evol. 50: 167-182.Google Scholar
  14. Ishikawa, Y., M. Yoshimoto, N. Yamamoto & H. Ito. 1999. Different brain morphologies from different genotypes in a single teleost species, the medaka (Oryzias latipes). Brain Behav. Evol. 53: 2-9.Google Scholar
  15. Jacobs, B.L., H. VanPraag & F.H. Gage. 2000. Depression and the birth and death of brain cells. Amer. Sci. 88: 340-345.Google Scholar
  16. Jonsson, B. 1997. Review of ecological and behavioral interactions between cultured and wild Atlantic salmon. ICES J. Mar. Sci. 54: 1031-1039.Google Scholar
  17. Jonsson, B., N. Jonsson & L.P. Hansen. 1991. Difference in life history and migratory behavior between wild and hatchery reared Atlantic salmon in nature. Aquaculture 98: 69-78.Google Scholar
  18. Kempermann, G., H.G. Kuhn & F.H. Gage. 1997a. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc. Nat. Acad. Sci. 94: 10409-10414.Google Scholar
  19. Kempermann, G., H.G. Kuhn & F.H. Gage. 1997b. More hippocampal neurons in adult mice living in an enriched environment. Nature 386: 493-495.Google Scholar
  20. Kempermann, G. & F.H. Gage. 1999. New nerve cells for the adult brain. Sci. Amer. May 48-53.Google Scholar
  21. Kotrschal, K. & M. Palzenberger. 1992. Neuroecology of cyprinids: comparative qualitative histology reveals diverse brain patterns. Env. Biol. Fish. 33: 135-152.Google Scholar
  22. Kotrschal, K., M.J. VanStaaden & R. Huber. 1998. Fish brains: evolution and environmental relationships. Rev. Fish. Biol. Fisheries 8: 373-408.Google Scholar
  23. Masai, H., K. Takatsuji & Y. Sato. 1982. Morphological variability of the brains under domestication from the crucian carp to the goldfish. Z. Zool. Syst. Evol.-Forsch. 20: 112-118.Google Scholar
  24. Moyle, P.B. & J.J. Cech. 2000. Fishes: an introduction to ichthyology, 4th edn. Prentice Hall, Upper Saddle River. 612 pp.Google Scholar
  25. Petersson, E. & T. Jarvi. 1997. Reproductive behavior of sea trout (Salmo trutta)-the consequences of sea-ranching. Behavior 134: 1-22.Google Scholar
  26. Philippart, J.C. 1995. Is captive breeding an effective solution for the preservation of endemic species? Biol. Cons. 72: 281-295.Google Scholar
  27. Plognamm, P. & D. Kruska. 1990. Volumetric comparison of auditory structures in the brains of European wild boars (Sus scrofa) and domesticated pigs (Sus scrofa f.dom.). Brain Behav. Evol. 35: 146.Google Scholar
  28. Shumway, C.A. 1999. A neglected science: applying behavior to aquatic conservation. Env. Biol. Fish. 55: 183-201.Google Scholar
  29. Snyder, N.R.F., S.R. Kerrickson, S.R. Bessinger, J.W. Wiley, T.B. Smith, W.D. Toone & B. Miller. 1996. Limitations of captive breeding in endangered species recovery. Con. Biol. 10: 338-348.Google Scholar
  30. Unwin, M.J. & G.J. Glova. 1997. Changes in life history parameters in a naturally spawning population of Chinook salmon (Oncorhynchus tshawytscha) associated with releases of hatchery reared fish. Can. J. Fish. Aquat. Sci. 54: 1235-1245.Google Scholar
  31. VanPraag, H., B.R. Christie, T.J. Sejnowski & F.H. Gage. 1999. Running enhances neurogenesis, learning and long-term potentiation in mice. Proc. Nat. Acad. Sci. 96: 13427-13431.Google Scholar
  32. Wiesel, T.N. 1982. The postnatal development of the visual cortex and the influence of environment. Nature 299: 583-591.Google Scholar
  33. Yoshiyama, R.M. 1999. A history of salmon and people in the Central Valley Region of California. Rev. Fish. Sci. 7: 197-239.Google Scholar
  34. Yoshiyama, R.M., F.W. Fisher & P.B. Moyle. 1998. Historical abundance and decline of Chinook salmon in the CentralValley region in California. N. Amer. J. Fish. Mang. 18: 487-521.Google Scholar
  35. Yoshiyama R.M., E.R. Gerstung, F.W. Fisher & P.B. Moyle. 2000. Chinook salmon in the California Central Valley: an assessment. Fisheries 25(2): 6-20.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Michael P. Marchetti
    • 1
  • Gabrielle A. Nevitt
    • 2
  1. 1.Department of BiologyCalifornia State University ChicoChicoU.S.A.
  2. 2.Section of Neurobiology, Physiology and Behavior, Division of Biological SciencesUniversity of California DavisDavisU.S.A

Personalised recommendations