Journal of Computational Neuroscience

, Volume 14, Issue 3, pp 283–309 | Cite as

Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling

  • Timothy J. Lewis
  • John Rinzel


We study the dynamics of a pair of intrinsically oscillating leaky integrate-and-fire neurons (identical and noise-free) connected by combinations of electrical and inhibitory coupling. We use the theory of weakly coupled oscillators to examine how synchronization patterns are influenced by cellular properties (intrinsic frequency and the strength of spikes) and coupling parameters (speed of synapses and coupling strengths). We find that, when inhibitory synapses are fast and the electrotonic effect of the suprathreshold portion of the spike is large, increasing the strength of weak electrical coupling promotes synchrony. Conversely, when inhibitory synapses are slow and the electrotonic effect of the suprathreshold portion of the spike is small, increasing the strength of weak electrical coupling promotes antisynchrony (see Fig. 10). Furthermore, our results indicate that, given a fixed total coupling strength, either electrical coupling alone or inhibition alone is better at enhancing neural synchrony than a combination of electrical and inhibitory coupling. We also show that these results extend to moderate coupling strengths.

synchrony electrical coupling gap junctions inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez VA, Chow CC, VanBockstaele EJ, Williams JT (2002) Frequency-dependent synchrony in the locus ceruleus: Role of electrical coupling. Proc. Natl. Acad. Sci. USA 99: 4032-4036.CrossRefPubMedGoogle Scholar
  2. Amitai Y, Gibson JR, Beierlein M, Patrick SL, Ho AM, Connors BW, Golumb D (2002) Spatial dimensions of electrically coupled networks of interneurons in neocortex. J. Neurosci. 22: 4142-4152.PubMedGoogle Scholar
  3. Beierlein M, Gibson JR, Connors BW (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3: 904-910.CrossRefPubMedGoogle Scholar
  4. Bem T, LeFeuvre Y, Simmers J, Meyrand P (2002) Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit. J. Neurophysiol. 87: 538-547.PubMedGoogle Scholar
  5. Benardo LS (1997) Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. J. Neurophysiol. 77: 3134-3144.PubMedGoogle Scholar
  6. Bressloff PC, Coombes S (1997) Synchrony in an array of integrate-and-fire neurons with dendritic structure. Phys. Rev. Lett. 78: 4665-4668.CrossRefGoogle Scholar
  7. Bressloff PC, Coombes S (2000) A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators. SIAM J. Appl. Math. 60: 820-841.CrossRefGoogle Scholar
  8. Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J. Physiol. (Lond) 513: 117-126.CrossRefGoogle Scholar
  9. Buzsáki G, Chrobak JJ (1995) Temporal structure in spatially organized neuronal ensembles: A role for interneuronal networks. Curr. Opin. Neurobiol. 5: 504-510.CrossRefPubMedGoogle Scholar
  10. Chow CC (1998) Phase-locking in weakly heterogeneous neuronal networks. Physica D 118: 343-370.Google Scholar
  11. Chow CC, Kopell N (2000) Dynamics of spiking neurons with electrical coupling. Neural Comp. 12: 1643-1678.CrossRefGoogle Scholar
  12. Crook SM, Ermentrout GB, Bower JM (1998) Dendritic and synaptic effects in systems of coupled cortical oscillators. J. Comput. Neurosci. 5: 315-329.CrossRefPubMedGoogle Scholar
  13. Erisir A, Lau D, Rudy B, Leonard S (1999) Function of specific K + channels in sustained high-frequency firing of fast-spiking neocortical cells. J. Neurophysiol. 82: 2476-2489.PubMedGoogle Scholar
  14. Ermentrout GB (1996) Type I Membranes, phase resetting curves and synchrony. Neural Comp. 8: 979-1001.Google Scholar
  15. Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: Insights from phase dynamics and speculation on computational role. Neuron 29: 33-44.CrossRefPubMedGoogle Scholar
  16. Ermentrout GB, Kopell N (1991) Multiple pulse interation and averaging in coupled neural oscillators. J. Math. Biol. 29: 195-217.Google Scholar
  17. Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Natl. Acad. Sci. USA 95: 1259-1264.CrossRefPubMedGoogle Scholar
  18. Fisahn A, Pike F, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394: 186-189.CrossRefPubMedGoogle Scholar
  19. Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402: 72-75.CrossRefPubMedGoogle Scholar
  20. Galarreta M, Hestrin S (2001a) Electrical synapses between GABAreleasing interneurons. Nat. Rev. Neurosci. 2: 425-433.CrossRefPubMedGoogle Scholar
  21. Galarreta M, Hestrin S (2001b) Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292: 2295-2299.CrossRefPubMedGoogle Scholar
  22. Gerstner W (1995) Time structure of the activity in neural network models. Phys. Rev. E 51: 738-758.CrossRefGoogle Scholar
  23. Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402: 75-79.CrossRefPubMedGoogle Scholar
  24. Golomb D, Hansel D, Mato G (2001) Mechanisms of synchrony of neural activity in large networks. In: F Moss, S Gielen, eds. Handbook of Biological Physics, Vol. 4: Neuro-Informatics and Neural Modelling. Elsevier, Amsterdam. pp. 887-968.Google Scholar
  25. Golomb D, Wang X, Rinzel J (1994) Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. J. Neurophysiol. 72: 1109-1126.PubMedGoogle Scholar
  26. Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus dependent synchronization of neuronal assemblies. Neural Comp. 5: 550-569.Google Scholar
  27. Gupta A, Wang Y, Markram H (2000) Organization principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273-278.CrossRefPubMedGoogle Scholar
  28. Han SK, Kurrer C, Kuramoto Y (1995) Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75: 3190-3193.CrossRefPubMedGoogle Scholar
  29. Hansel D, Mato G, Meunier C. (1995) Synchrony in excitatory neural networks. Neural Comp. 7: 307-337.Google Scholar
  30. Kopell N (1988) Toward a theory of modeling central pattern generators. In: A Cohen, ed. Neural Control of Rhythmic Movements in Vertebrates. John Wiley, New York. pp. 396-413.Google Scholar
  31. Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, Berlin.Google Scholar
  32. Lewis TJ, Gibson JR, Connors BW, Rinzel J (2001) Dynamics of neurons connected by inhibitory and electrical synapses. Society for Neuroscience Abstract 504: 16.Google Scholar
  33. McBain CJ, Fisahn A (2001) Interneurons unbound. Nat. Rev. Neurosci. 2: 11-23.CrossRefPubMedGoogle Scholar
  34. Michelson HB, Wong RK (1994) Synchronization of inhibitory neurones in the guinea-pig hippocampus in vitro. J. Physiol. (Lond) 92: 35-45.Google Scholar
  35. Neltner L, Hansel D, Mato G, Meunier C (2000) Synchrony in hetergeneous networks of spiking neurons. Neural Comp. 12: 1607-1641.CrossRefGoogle Scholar
  36. Oviedo H, Reyes AD (2002) Boosting of neuronal firing evoked with asynchronous and synchronous inputs in the dendrite. Nat. Neurosci. 5: 261-266.CrossRefPubMedGoogle Scholar
  37. Rinzel J, Ermentrout GB (1998) Analysis of neural excitability and oscillations. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Synapse to Networks. MIT Press, Cambridge, MA. pp. 251-292.Google Scholar
  38. Ritz R, Sejnowski TJ (1997) Synchronous oscillatory activity in sensory systems: New vistas on mechanism. Curr. Opin. Neurobiol. 7: 536-546.CrossRefPubMedGoogle Scholar
  39. Sherman A, Rinzel J (1994) Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Natl. Acad. Sci. USA 89: 2471-2474.Google Scholar
  40. Skinner FK, Zhang Y, Velazquez JLP, Carlen PL (1999) Bursting in inhibitory interneuronal networks: A role for gap-junctional coupling. J. Neurophysiol. 81: 1274-1283.PubMedGoogle Scholar
  41. Stuart G, Sakmann B (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15: 1065-1076.CrossRefPubMedGoogle Scholar
  42. Swadlow HA, Beloozerova IN, Sirota MG (1998) Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. J. Neurophysiol. 79: 567-582.PubMedGoogle Scholar
  43. Tamás G, Buhl EH, Lörinz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat. Neurosci. 3: 366-371.CrossRefPubMedGoogle Scholar
  44. Traub RD (1995) Model of synchronized population bursts in electrically coupled interneurons containing active dendrites. J. Comput. Neurosci. 2: 283-289.PubMedGoogle Scholar
  45. Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FEN, Whittington MA (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distibuted networks. J. Neurosci. 21: 9478-9488.PubMedGoogle Scholar
  46. Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G (1999) The role of Locus Coeruleus in the regulation of cognitive performance. Science 283: 549-554.CrossRefPubMedGoogle Scholar
  47. van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1: 313-321.PubMedGoogle Scholar
  48. Various (1999) Reviews on the binding problem. Neuron 24: 7-125.CrossRefPubMedGoogle Scholar
  49. Wang X, Buzsáki G (1996) Gamma oscillations by synaptic inhibition in an interneuronal network model. J. Neurosci. 16: 6402-6413.PubMedGoogle Scholar
  50. Wang X, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comp. 4: 84-97.Google Scholar
  51. White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibitory neurons. J. Comput. Neurosci. 5: 5-16.CrossRefPubMedGoogle Scholar
  52. Whittington MA, Standford IM, Traub RD, Jefferys JG (1997) Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampual slice. J. Physiol. (Lond) 502: 591-602.CrossRefGoogle Scholar
  53. Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373: 612-615.CrossRefPubMedGoogle Scholar
  54. Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, Buzsáki G (1995) Sharp wave-associated high-frequency oscillations (200 Hz) in the intact hippocampus: Network and intracellular mechanisms. J. Neurosci. 15: 30-46.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Timothy J. Lewis
    • 1
  • John Rinzel
    • 1
  1. 1.Center for Neural Science and Courant Institute for Mathematical ScienceNew York UniversityUSA

Personalised recommendations