Journal of Statistical Physics

, Volume 90, Issue 3–4, pp 571–595

Scaling Exponents for Active Scalars

  • Peter Constantin
Article

Abstract

We provide bounds for Dirichlet quotients and for generalized structure functions for 3D active scalars and Navier–Stokes equations. These bounds put constraints on the possible extent of anomalous scaling.

Dirichlet quotients 3D active scalars Navier–Stokes equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. N. Kolmogorov, Local structure of turbulence in an incompressible fluid at very high Reynolds number, Dokl. Akad. Nauk. SSSR 30:299 (1941).Google Scholar
  2. 2.
    U. Frisch, Turbulence, Cambridge University Press.Google Scholar
  3. 3.
    R. H. Kraichnan, Small-scale structure of a scalar field convected by turbulence, Phys. of Fluids, 11(5):945-953 (1968).Google Scholar
  4. 4.
    R. H. Kraichnan, Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Lett. 72(7):1016-1019 (1994).Google Scholar
  5. 5.
    P. Constantin, Regularity results for incompressible fluids, in The Earth's climate as a dynamical system, ANL/MCS-TM-170, pp. 21-38 (1992).Google Scholar
  6. 6.
    P. Constantin, Geometric statistics in turbulence, SIAM Rev. 36:73-98 (1994).Google Scholar
  7. 7.
    P. Constantin, A. Majda, and E. Tabak, Formation of strong fronts in the 2D quasigeostrophic thermal active scalar, Nonlinearity 7:1495-1533 (1994).Google Scholar
  8. 8.
    M. Chertkov, G. Falkovich, L. Kolokolov, and V. Lebedev, Statistics of a passive scalar advected by a large scale two-dimensional velocity field: analytic solution, Phys. Rev. E 51(6):5609-5627 (1995).Google Scholar
  9. 9.
    G. Eyink and J. Xin, Universality of the inertial-convective range in Kraichnan's model of a passive scalar, preprint (July 4, 1996).Google Scholar
  10. 10.
    K. Gawedzki and A. Kupiainen, Anomalous scaling of the passive scalar, Phys. Rev. Lett. 7521 (1995), 3834-3837.Google Scholar
  11. 11.
    R. H. Kraichnan, V. Yakhot, and S. Chen, Scaling relations for a randomly advected passive scalar field, Phys. Rev. Lett. 75(2):240-243 (1995).Google Scholar
  12. 12.
    V. L'vov, I. Procaccia, and A. Fairhall, Anomalous scaling in fluid mechanics: the case of the passive scalar, Phys. Rev. E 50(6):4684-4704 (1994).Google Scholar
  13. 13.
    B. Shraiman and E. Siggia, Anomalous scaling of a passive scalar in turbulent flow, C.R. Acad. Sci. Paris 321(IIb): 279-284 (1995).Google Scholar
  14. 14.
    E. M. Stein, Singular integrals and differentiability properties of functions (Princeton University Press, Princeton 1970).Google Scholar
  15. 15.
    P. Constantin and Ch. Fefferman, Scaling exponents in fluid turbulence: some analytic results, Nonlinearity 7:41-57 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Peter Constantin
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicago

Personalised recommendations