Journal of Statistical Physics

, Volume 90, Issue 5–6, pp 1449–1459 | Cite as

A Factorization of Determinant Related to Some Random Matrices

  • Tomoyuki Shirai


We consider the expectation of the determinant det(λ−X)−1for Im λ>0 associated with some random N×Nmatrices and factorize it into NStieltjes transforms of probability measures. Moreover, using this factorization, we investigate the limiting behavior of the logarithm of the quantity as N→∞.

Scattering problem random matrix (GUE) factorization orthogonal polynomials semicircle law 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bessis, C. Itzykson, and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. Applied Math. 1:109-157 (1980).Google Scholar
  2. 2.
    P. L. Duren, Theory of H p-spaces, Pure Appl. Math. 8(1970), Academic Press.Google Scholar
  3. 3.
    F. Gesztesy, H. Holden, and B. Simon, Absolute summability of the trace relation for certain Schrödinger operators, Commun. Math. Phys. 168:137-161 (1995).Google Scholar
  4. 4.
    K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, TRITA-MAT-1995-MA-19, (Roiyal Institute of Technology, Stockholm, 1995.)Google Scholar
  5. 5.
    M. L. Mehta, Random Matrices, 2nd edition, Academic Press, 1991.Google Scholar
  6. 6.
    A. Boutet de Monvel, L. Pastur, and M. Shcherbina, On the statistical mechanics approach in the random matrix theory: Integrated density of states, in J. of Stat. Phys., Vol. 79,Nos. 3/4, 1995.Google Scholar
  7. 7.
    T. Shirai, A Trace Formula for Discrete Schrödinger Operators, to appear.Google Scholar
  8. 8.
    G. Szegö, Orthogonal Polynomials, (American Mathematical Society, New York 1959).Google Scholar
  9. 9.
    C. A. Tracy and H. Widom, Introduction to Random Matrices, Lecture Notes in Physics, Vol. 424, (Springer-Verlag 1993), pp. 103-130.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Tomoyuki Shirai
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations