Neurochemical Research

, Volume 28, Issue 6, pp 941–953 | Cite as

N-Acetylaspartate in the Vertebrate Brain: Metabolism and Function

  • Morris H. Baslow


N-Acetyl-l-aspartate (NAA) is an amino acid that is present in the vertebrate brain. Its concentration is one of the highest of all free amino acids and, although NAA is synthesized and stored primarily in neurons, it cannot be hydrolyzed in these cells. Furthermore, neuronal NAA is dynamic and turns over more than once each day by virtue of its continuous efflux, in a regulated intercompartmental cycling via extracellular fluids, between neurons and a second compartment in oligodendrocytes. The metabolism of NAA, between its anabolic compartment in neurons and its catabolic compartment in oligodendrocytes, and its possible physiological role in the brain has been the subject of much speculation. There are two human inborn errors in metabolism of NAA. One is Canavan disease (CD), in which there is a buildup of NAA (hyperacetylaspartia) and associated spongiform leukodystrophy, caused by a lack of aspartoacylase activity. The other is a singular human case of lack of NAA (hypoacetylaspartia), where the enzyme that synthesizes NAA is apparently absent. There are two animal models currently available for studies of CD. One is a rat with a natural deletion of the catabolic enzyme, and the other a gene knockout mouse. In addition to the presence of NAA in neurons, its prominence in 1H nuclear magnetic resonance spectroscopic studies has led to its wide use in diagnostic human medicine as both an indicator of brain pathology and of disease progression in a variety of CNS diseases. In this review, various hypotheses regarding the metabolism of NAA and its possible role in the CNS are evaluated. Based on this analysis, it is concluded that although NAA may have several functions in the CNS, an important role of the NAA intercompartmental system is osmoregulatory, and in this role it may be the primary mechanism for the removal of intracellular water, against a water gradient, from myelinated neurons.

N-Acetyl-l-aspartate N-acetylaspartylglutamate astrocytes cerebral metabolism Canavan disease hypoacetylaspartia molecular water pumps neurons, oligodendrocytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baslow, M. H. 2000. Canavan's spongiform leukodystrophy: A clinical anatomy of a genetic metabolic CNS disease—An analytical review. J. Mol. Neurosci. 15:61–69.Google Scholar
  2. 2.
    Moreno, A., Ross, B. D., and Bluml, S. 2001. Direct determination of the N-acetyl-L-aspartate synthesis rate in the human brain by 13C MRS and [1-13C] glucose infusion. J. Neurochem. 77:347–350.Google Scholar
  3. 3.
    Baslow, M. H. 2002. Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system: An analytical review. Neurochem. Int. 40:295–300.Google Scholar
  4. 4.
    Baslow, M. H. and Resnik, T. R. 1997. Canavan disease: Analysis of the nature of the metabolic lesions responsible for development of the observed clinical symptoms. J. Mol. Neurosci. 9:109–126.Google Scholar
  5. 5.
    Kitada, K., Akimitsu, T., Shigematsu, Y., Kondo, A., Maihara, T., Yokoi, N., Kuramoto, T., Sasa, M., and Serikawa, T. 2000. Accumulation of N-acetyl-L-aspartate in the brain of the tremor rat, a mutant exhibiting absence-like seizure and spongiform degeneration in the central nervous system. J. Neurochem. 74: 2512–2519.Google Scholar
  6. 6.
    Tahmaz, F. E., Sam, S., Hoganson, G. E., and Quan, F. 2001. A partial deletion of the aspartoacylase gene is the cause of Canavan disease in a family from Mexico. J. Med. Genet. 38:E9.2(online).Google Scholar
  7. 7.
    Matalon, R., Rady, P. L., Platt, K. A., Skinner, H. B., Quast M. J., Campbell, G. A. et al. 2000. Knock-out mouse for Canavan disease: A model for gene transfer to the central nervous system. J. Gene Med. 2:165–175.Google Scholar
  8. 8.
    Martin, E., Capone, A., Schneider, J., Hennig, J., and Thiel, T. 2001. Absence of N-acetylaspartate in the human brain: Impact on neurospectroscopy? Ann. Neurol. 49:518–521.Google Scholar
  9. 9.
    Baslow, M. H. 1997. A review of phylogenetic and metabolic relationships between the acylamino acids, N-acetyl-L-aspartic acid and N-acetyl-L-histidine in the vertebrate nervous system. J. Neurochem. 68:1335–1344.Google Scholar
  10. 10.
    Choi, I.-Y. and Gruetter, R. 2001. In vivo 13C NMR measurement of total brain glycogen concentrations in the conscious rat. Proc. Intl. Soc. Mag. Reson. Med. 9:210.Google Scholar
  11. 11.
    Tsai, G. and Coyle, J. T. 1995. N-Acetylaspartate in neuropsychiatric disorders. Prog. Neurobiol. 46:531–540.Google Scholar
  12. 12.
    Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C., and Sibbitt, L. 1999. Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain. Proc. R. Soc. Lond. B, 266:1375–1379.Google Scholar
  13. 13.
    Jung, R. E., Yeo, R. A., Chiulli, S. J., Sibbitt, L., and Brooks, W. M. 2000. Myths of neuropsychology: Intelligence, neurometabolism and cognitive ability. Clin. Neuropsychol. 14:535–545.Google Scholar
  14. 14.
    Nicholson, C. and Sykova, E. 1998. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21:207–215.Google Scholar
  15. 15.
    Pfeuffer, J., Tkac, I., and Gruetter, R. 2000. Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. J. Cereb. Blood Flow Metab. 20:736–746.Google Scholar
  16. 16.
    Sager, T. N., Fink-Jensen, A., and Hansen, A. J. 1997. Transient elevation of interstitial N-acetylasparate in reversible global brain ischemia. J. Neurochem. 68:675–682.Google Scholar
  17. 17.
    Goldstein, F. B. 1976. Amidohydrolases of brain: Enzymatic hydrolysis of N-acetyl-L-asparatate and other N-acyl-L-amino acids. J. Neurochem. 26:45–49.Google Scholar
  18. 18.
    Sager, T. N., Thomsen, C., Valsborg, J. S., Laursen, H., and Hansen, A. J. 1999. Astroglia contain a specific transport mechanism for N-acetyl-L-aspartate. J. Neurochem. 73:807–811.Google Scholar
  19. 19.
    Signoretti, S., Marmarou, A., Tavazzi, B., Lazzarino, G., Beaurnont, A., and Vagnozzi, R. 2001. N-Acetylaspartate reduction as a measure on injury severity and mitochondrial dysfunction following diffuse traumatic injury. J. Neurotrauma 18:977–991.Google Scholar
  20. 20.
    Bhakoo, K. K., Craig, T. J., and Styles, P. 2001. Developmental and regional distribution of aspartoacylase in rat brain. J. Neurochem. 79:211–220.Google Scholar
  21. 21.
    Huang, W., Wang, H., Kekuda, R., Fei, Y., Friedrich, A., Wang, J., et al. 2000. Transport of N-acetyasparate by Na+-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain. J. Pharmacol. Exp. Therapeut. 295:392–403.Google Scholar
  22. 22.
    Baslow, M. H., Suckow, R., Sapirstein, V., and Hungund, B. L. 1999. Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes. J. Mol. Neurosci. 13:47–53.Google Scholar
  23. 23.
    Baslow, M. H., Suckow, R. F., Berg, M. J., Marks, N., Saito, M., and Bhakoo, K. K. 2001. Differential expression of carnosine, homocarnosine and N-acetyl-L-histidine hydrolytic activities in cultured rat macroglial cells. J. Mol. Neurosci. 17:87–95.Google Scholar
  24. 24.
    Chakraborty, G., Mekala, P., Yahya, D., Wu, G., and Ledeen, R. W. 2001. Intraneural N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: Evidence for myelin-associated aspartoacylase. J. Neurochem. 78:736–745.Google Scholar
  25. 25.
    Kunnecke, B., Cerdannn, S., and Seelig, J. 1993. Cerebral metabolism of [1,2-13C2] glucose and [U-13C4] 3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed. 6:264–277.Google Scholar
  26. 26.
    Warringa, R. A. J., Hoeben, R. C., Koper, J. W., Sykes, J. E. C., van Golde, L. M. G., and Lopes-Cardozo, M. 1987. Hydrocortisone stimulates the development of oligodendrocytes in primary glial cultures and affects glucose metabolism and lipid synthesis in these cultures. Dev. Br. Res. 34:79–86.Google Scholar
  27. 27.
    van der Pal, R. H. M., Koper, J. W., van Golde, L. M. G., and Lopes-Cardozo, M. 1988. Effects of insulin-like growth factor (IGF-I) on oligodendrocyte-enriched glial cultures. J. Neurosci. Res. 19:483–490.Google Scholar
  28. 28.
    Sonnewald, U., Akiho, H., Koshiya, K., and Iwai, A. 1998. Effect of orotic acid on the metabolism of cerebral cortical astrocytes during hypoxia and reoxygenation: An NMR spectroscopy study. J. Neurosci. Res. 51:103–108.Google Scholar
  29. 29.
    Lear, J. L. and Ackermann, R. F. 1990. Evaluation of radio-labeled acetate and fluoracetate as potential tracers of cerebral oxidative metabolism. Metab. Br. Dis. 5:45–56.Google Scholar
  30. 30.
    Birken, D. L. and Oldendorf, W. H. 1989. N-acetyl-L-aspartic acid: A literature review of a compound prominent in H-NMR spectroscopic studies of brain. Neurosci. Biobehav. Rev. 13: 23–31.Google Scholar
  31. 31.
    Burlina, A. P., Ferrari, V., Facci, L., Skaper, S. D., and Burlina, A. B. 1997. Mast cells contain large quantities of the secretagogue-sensitive N-acetylasparate. J. Neurochem. 69:1314–1317.Google Scholar
  32. 32.
    Baslow, M. H. and Yamada, S. 1997. Identification of N-acetylaspartate in the lens of the vertebrate eye: A new model for the investigation of the function of N-acetylated amino acids in vertebrates. Exp. Eye Res. 64:283–286.Google Scholar
  33. 33.
    Pouwels, P. J. W., Brockkmann, K., Kruse, B., Wilken, B., Wick, M., Hanefeld, F., and Frahm, J. 1999. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr. Res. 46:474–485.Google Scholar
  34. 34.
    Baslow, M. H. 2000. Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: Role in glial cell-specific signaling. J. Neurochem. 75:453–459.Google Scholar
  35. 35.
    Davies, S. E. C., Gotoh, M., Richards, D. A., and Obrenovitch, T. P. 1998. Hypoosmolarity induces an increase in extracellular N-acetylaspartate concentration in the rat striatum. Neurochem. Res. 23:1021–1025.Google Scholar
  36. 36.
    Attwell, D. and Laughlin, S. B. 2001. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21:1133–1145.Google Scholar
  37. 37.
    Le Bihan, D., Turner, R., and Douek, P. 1993. Is water diffusion restricted in human brain white matter? An echo-planar NMR imaging study. Neuroreport 4:887–890.Google Scholar
  38. 38.
    Mackert, B. M., Staub, F., Baethmann, A., and Kempski, O. 1996. Anoxia in vitro does not induce neuronal swelling or death. J. Neurol. Sci. 139:39–47.Google Scholar
  39. 39.
    Baslow, M. H. 1998. Function of the N-acetyl-L-histidine system in the vertebrate eye: Evidence in support of a role as a molecular water pump. J. Mol. Neurosci. 10:193–208.Google Scholar
  40. 40.
    Baslow, M. H. 1999. The existence of molecular water pumps in the nervous system: A review of the evidence. Neurochem. Int. 34:77–90.Google Scholar
  41. 41.
    Meinild, A.-K., Klaerke, D. A., Loo, D. D. F., Wright, E. M., and Zeuthen, T. 1998. The human Na+-glucose cotransporter is a molecular water pump. J. Physiol. 508: 15–21.Google Scholar
  42. 42.
    Ma cA ulay, N., Gether, U., Klaerke, D. A., and Zeuthen, T. 2001. Water transport by the human Na+-coupled glutamate cotransporter expressed in Xenopus oocytes. J. Physiol. 530:367–378.Google Scholar
  43. 43.
    Zeuthen, T. 2000 Molecular water pumps. Rev. Physiol. Biochem. Pharmacol. 141:97–151.Google Scholar
  44. 44.
    Zeuthen, T. 2002. General models for water transport across leaky epithelia. Int. Rev. Cytol. 215:285–317.Google Scholar
  45. 45.
    Zeuthen, T., Meinild, A.-K., Loo, D. D. F., Wright, E. M., and Klaerke, D. A. 2001. Isotonic transport by the Na+-glucose cotransporter SGLT1 from humans and rabbit. J. Physiol. 531: 631–644.Google Scholar
  46. 46.
    Zeuthen, T. and Ma cA ulay, N. 2002. Cotransporters as molecular water pumps. Int. Rev. Cytol. 215:259–284.Google Scholar
  47. 47.
    Nissenson, A. R., Levin, M. L., Klawans, H. L., and Nausieda, P. L. 1977. Neurological sequelae of end stage renal disease (ESRD). J. Chron. Dis. 30: 705–733.Google Scholar
  48. 48.
    Wells, T. 1998. Vesicular osmometers, vasopressin secretion and aquaporin-4: A new mechanism for osmoreception? Mol. and Cell. Endocrinol. 136:103–107.Google Scholar
  49. 49.
    Neely, J. D., Christensen, B. M., Nielsen, S., and Agre, P. 1999. Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38:11156–11163.Google Scholar
  50. 50.
    Nicchia, G. P., Frigerl, A., Liuzzi, G. M., Santacroce, M. P., Nico, B., Procino, G., Quondamatteo, F., Herken, R., Roncali, L., and Svelto, M. 2000. Aquaporin-4-containing astrocytes sustain a temperature-and mercury-insensitive swelling in vitro. Glia 31:29–38.Google Scholar
  51. 51.
    Niermann, H., Amiry-Moghaddam, M., Holthoff, K., Witte, O. W., and Ottersen, O. P. 2001. A novel role of vasopressin in the brain: Modulation of activity-dependent water flux in the neocortex. J. Neurosci. 21:3045–3051.Google Scholar
  52. 52.
    Zhu, X.-H. and Chen, W. 2001. Observed BOLD effects on cerebral metabolite resonances in human visual cortex during visual stimulation: A functional 1H MRS study at 4 T. Magn. Reson. Med. 46:841–847.Google Scholar
  53. 53.
    Mayeux, V., Pons, F., Baldy-Moulinier, M., and Valmier, J. 1996. Early postnatal muscle contractile activity regulates the carbonic anhydrase phenotype of proprioceptive neurons in young and mature mice: Evidence for a critical period in development. Neuroscience 71:787–795.Google Scholar
  54. 54.
    Cammer, W., Zhang, H., and Cammer, M. 1993. Glial cell abnormalities in the CNS of the carbonic anhydrase II deficient mutant mouse. J. Neurolog. Sci. 118:1–9.Google Scholar
  55. 55.
    Sapirstein, V. S., Durrie, R., Nolan, C. E., and Marks, N. 1993. Identification of membrane-bound carbonic anhydrase in white matter coated vesicles: The fate of carbonic anhydrase and other white matter coated vesicle proteins in triethyl tin-induced leukoencephalopathy. J. Neurosci. Res. 35:83–91.Google Scholar
  56. 56.
    Fischer, I., Durrie, R., and Sapirstein, V. S. 1994. Plasmolipin: The other myelin proteolipid—A review of studies of its structure, expression, and function. Neurochem. Res. 19:959–966.Google Scholar
  57. 57.
    Thiel, T., Ensenauer, R., Lehnert, W., Hennig, J., and Martin, E. 2001. Detection and monitoring of neurometabolic diseases using in vivo magnetic resonance spectroscopy. Neurochem. News Newslett. 1:125–128.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Morris H. Baslow
    • 1
  1. 1.Nathan S. Kline Institute for Psychiatric ResearchOrangeburg

Personalised recommendations