Journal of Materials Science

, Volume 38, Issue 8, pp 1611–1615 | Cite as

Preparation of composite TiO2-zeolite sheets using a papermaking technique and their application to environmental improvement Part II Effect of zeolite coexisting in the composite sheet on NOxremoval

  • H. Ichiura
  • T. Kitaoka
  • H. Tanaka

Abstract

Sheets with a photocatalytic action were prepared using a papermaking technique. These sheets included single TiO2-sheet (Ti) and composite TiO2 sheets with A type zeolite (Ti-ZeA) and Y type zeolite (Ti-ZeY). A sheet (ZeA-Ti sol) containing A type zeolite treated with TiO2 sol was also prepared. Nitrogen monoxide (NO) was photocatalytically decomposed continuously when these sheets were used under UV irradiation. The subsequent photooxidation of NO to NO2 and of NO2 to HNO3 was observed. The NOx removal efficiencies of the sheets increased in the following order; Ti-ZeY < Ti < Ti-ZeA < ZeA-Ti sol. The reaction mechanism is discussed on the basis of the combined effects of the photocatalytic ability of TiO2 and the function of zeolites to adsorb NO and retain the products.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Castro, S. Madronich, S. Rivale, A. Muhlia and B. Mar, Atmosph. Environ. 35 (2001) 1765.Google Scholar
  2. 2.
    A. Farrell, Energy Policy 29(13) (2001) 1061.Google Scholar
  3. 3.
    P. WÅhlin, F. Palmgren and R. V. Dingenen, Atmosph. Environ. 35(Suppl. No. 1) (2001) S63.Google Scholar
  4. 4.
    G. D'Amato, G. Liccardi and M. D'Amato, J. Invest. Allergol. Clin. Immunol..10(3) (2000) 123.Google Scholar
  5. 5.
    J. V. Spadaro and A. Rabl, Atmosph. Environ. 35(28) (2001) 4763.Google Scholar
  6. 6.
    A. Coppalle, V. Delmas and M. Bobbia, ibid. 35(31) (2001) 5361.Google Scholar
  7. 7.
    S. Syri, M. Amann, W. SchÖpp and C. Heyes, Environ. Pollut. 113(1) (2001) 59.Google Scholar
  8. 8.
    N. Negishi, K. Takeuchi and T. Ibusuki, Appl. Surf. Sci. 121/122 (1997) 417.Google Scholar
  9. 9.
    I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Takeuchi, J. Mol. Catal. A: Chem. 161(1/2) (2000) 205.Google Scholar
  10. 10.
    S. Matsuda, H. Hatano and A. Tsutsumi, Chem. Eng. J. 82 (2001) 183.Google Scholar
  11. 11.
    K. Hashimoto, K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami and Y. Kera, Appl. Catal. B: Environ. 30(3/4) (2001) 429.Google Scholar
  12. 12.
    T. Ibusuki and K. Takeuchi, J. Mol. Catal. 88 (1994) 93.Google Scholar
  13. 13.
    Y. Komazaki, H. Shimizu and S. Tanaka, Atmosph. Environ. 33(27) (1999) 4363.Google Scholar
  14. 14.
    H. Ichiura, Y. Kubota, Z. Wu and H. Tanaka, J. Mater. Sci. 36(4) (2001) 913.Google Scholar
  15. 15.
    H. Ichiura, N. Okamura, T. Kitaoka and H. Tanaka, ibid. 36(20) (2001) 4921.Google Scholar
  16. 16.
    H. Ichiura, T. Kitaoka and H. Tanaka, ibid. 37(14) (2002) 2937.Google Scholar
  17. 17.
    A. Dyer, “An Introduction to Zeolite Molecular Sieve” (John Wiley, New York, 1988).Google Scholar
  18. 18.
    C. L. Garcia and J. A. Lercher, J. Phys. Chem. 96 (1992) 2230.Google Scholar
  19. 19.
    J. Yang and C. Lee, AIChE J. 44(6) (1998) 1325.Google Scholar
  20. 20.
    Z. S. Rak and H. J. Veringa, React. Kinet. Catal. Lett. 60 (1997) 303.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • H. Ichiura
    • 1
  • T. Kitaoka
    • 1
  • H. Tanaka
    • 1
  1. 1.Department of Forest and Forest Products SciencesKyushu UniversityFukuokaJapan

Personalised recommendations