Advertisement

Journal of Computational Neuroscience

, Volume 14, Issue 3, pp 239–251 | Cite as

Tuning Neocortical Pyramidal Neurons between Integrators and Coincidence Detectors

  • Michael Rudolph
  • Alain Destexhe
Article

Abstract

Do cortical neurons operate as integrators or as coincidence detectors? Despite the importance of this question, no definite answer has been given yet, because each of these two views can find its own experimental support. Here we investigated this question using models of morphologically-reconstructed neocortical pyramidal neurons under in vivo like conditions. In agreement with experiments we find that the cell is capable of operating in a continuum between coincidence detection and temporal integration, depending on the characteristics of the synaptic inputs. Moreover, the presence of synaptic background activity at a level comparable to intracellular measurements in vivo can modulate the operating mode of the cell, and act as a switch between temporal integration and coincidence detection. These results suggest that background activity can be viewed as an important determinant of the integrative mode of pyramidal neurons. Thus, background activity not only sharpens cortical responses but it can also be used to tune an entire network between integration and coincidence detection modes.

cerebral cortex synaptic background computational model operating mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles M (1982) Role of the cortical neuron: Integrator or coincidence detector? Isr. J. Med. Sci. 18: 83-92.PubMedGoogle Scholar
  2. Abeles M, Bergman H, Margalit E, Vaadia E (1993) Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol. 70: 1629-1638.PubMedGoogle Scholar
  3. Aertsen A, Diesmann M, Gewaltig MO (1996) Propagation of synchronous spiking activity in feedforward neural networks. J. Physiology (Paris) 90: 243-247.Google Scholar
  4. Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation 15: 1185-1202.Google Scholar
  5. Barlow H (1995) The neuron doctrine in perception. In: MS Gazzaniga, ed. The Cognitive Neurosciences. MIT Press. pp. 415-435.Google Scholar
  6. Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387: 278-281.CrossRefPubMedGoogle Scholar
  7. Bernander Ö, Douglas RJ, Martin KAC, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88: 11569-11573.PubMedGoogle Scholar
  8. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18: 10464-10472.PubMedGoogle Scholar
  9. Bugmann G, Christodoulou C, Taylor JG (1997) Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset. Neural. Comp. 9: 985-1000.Google Scholar
  10. Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256: 1025-1027.PubMedGoogle Scholar
  11. Contreras D, Destexhe A, Steriade M (1997) Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J. Neurophysiol. 78: 335-350.PubMedGoogle Scholar
  12. deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381: 610-613.CrossRefPubMedGoogle Scholar
  13. deCharms RC, Zador A (2000) Neural representation and the cortical code. Annu. Rev. Neurosci. 23: 613-647.CrossRefPubMedGoogle Scholar
  14. DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39: 563-607.CrossRefPubMedGoogle Scholar
  15. Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: C Koch, I Segev, eds. Methods in Neuronal Modeling, 2nd edn. MIT Press, Cambridge, MA. pp. 1-26.Google Scholar
  16. Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81: 1531-1547.PubMedGoogle Scholar
  17. Diesmann M, Gewaltig MO, Aertsen A (1996) Characterization of synfire activity by propagating “pulse packets.” In: JM Bower, ed. Computational Neuroscience. Academic Press, San Diego. pp. 59-64.Google Scholar
  18. Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402: 529-533.CrossRefPubMedGoogle Scholar
  19. Engel AK, König P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: New vistas on integration in the nervous system. Trends Neurosci. 15: 218-226.CrossRefPubMedGoogle Scholar
  20. Gerstein GL, Bedenbaugh P, Aertsen AMHJ (1989) Neuronal assemblies. IEEE Trans. Biomed. Eng. 36: 4-14.CrossRefPubMedGoogle Scholar
  21. Gray CM (1994) Synchronous oscillations in neuronal systems: Mechanisms and functions. J. Comput. Neurosci. 1: 11-38.PubMedGoogle Scholar
  22. Han VZ, Grant K, Bell CC (2000) Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27: 611-622.CrossRefPubMedGoogle Scholar
  23. Häusser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290: 739-744.CrossRefPubMedGoogle Scholar
  24. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Computation 9: 1179-1209.PubMedGoogle Scholar
  25. Hô N, Destexhe A (2000) Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J. Neurophysiol. 84: 1488-1496.PubMedGoogle Scholar
  26. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500-544.PubMedGoogle Scholar
  27. Holmes WR (1986) Cable theory modeling of the effectiveness of synaptic inputs in cortical pyramidal cells. Ph.D. Thesis, University of California, Los Angeles.Google Scholar
  28. Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75: 1806-1814.PubMedGoogle Scholar
  29. Huguenard JR, Hamill OP, Prince DA (1988) Developmental changes in Na+ conductances in rat neocortical neurons: Appearance of a slow inactivating component. J. Neurophysiol. 59: 778-795.PubMedGoogle Scholar
  30. Johnston D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19: 165-186.CrossRefPubMedGoogle Scholar
  31. Kisley MA, Gerstein GL (1999) The continuum of operating modes for a passive model neuron. Neural Comp. 11: 1139-1154.CrossRefGoogle Scholar
  32. Koch C, Laurent G (1999) Complexity and the nervous system. Science 284: 96-98.CrossRefPubMedGoogle Scholar
  33. König P, Engel AK, Roelfsema PR, Singer W (1995) How precise is neuronal synchronization? Neural Comp. 7: 469-485.Google Scholar
  34. König P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19: 130-137.CrossRefPubMedGoogle Scholar
  35. Kretzberg J, Egelhaaf M, Warzecha A-K (2001) Membrane potential fluctuations determine the precision of spike timing and synchronous activity: A model study. J. Comp. Neurosci. 10: 79-97.CrossRefGoogle Scholar
  36. Krüger J, Becker JD (1991) Recognizing the visual stimulus from neuronal discharges. Trends Neurosci. 14: 282-286.CrossRefPubMedGoogle Scholar
  37. Lábos E (2000) Codes, operations, measurements and neural networks. Biosystems 58: 9-18.CrossRefPubMedGoogle Scholar
  38. Larkman AU (1991) Dendritic morphology of pyramidal neurons of the visual cortex of the rat. III. Spine distributions. J. Comp. Neurol. 306: 332-343.PubMedGoogle Scholar
  39. Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Computation 8: 501-509.PubMedGoogle Scholar
  40. MacGregor RJ (1991) Sequential configuration model for firing patterns in local neural networks. Biol. Cybern. 65: 339-349.CrossRefPubMedGoogle Scholar
  41. Magee JC (2000) Dendritic integration of excitatory synaptic input. Nature Rev. Neurosci. 1: 181-190.CrossRefGoogle Scholar
  42. Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503-1506.PubMedGoogle Scholar
  43. Marŝálek P, Koch C, Maunsell J (1997) On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Natl. Acad. Sci. USA 94: 735-740.CrossRefPubMedGoogle Scholar
  44. McClurkin JW, Optican LM, Richmond BJ, Gawne TJ (1991) Concurrent processing and complexity of temporally encoded neuronal messages in visual perception. Science 253: 675-677.PubMedGoogle Scholar
  45. Murthy VN, Fetz EE (1994) Effects of input synchrony on the firing rate of a three-compartment cortical neuron model. Neural Comp. 6: 1111-1126.Google Scholar
  46. Noda H, Adey R (1970) Firing variability in cat association cortex during sleep and wakefulness. Brain Res. 18: 513-526.CrossRefPubMedGoogle Scholar
  47. Nowak LG, Sanchez-Vives MV, McCormick DA (1997a) Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cereb. Cortex 7: 487-501.CrossRefPubMedGoogle Scholar
  48. Nowak LG, Sanchez-Vives MV, McCormick DA (1997b) Membrane potential trajectory preceding visually evoked action potentials in cat’s visual cortex. Soc. Neurosci. Abstr. 23: 14.Google Scholar
  49. Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME (2001) The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29: 769-777.CrossRefPubMedGoogle Scholar
  50. Panzeri S, Schultz SR (2001) A unified approach to the study of temporal, correlational, and rate coding. Neural Comp. 13: 1311-1349.CrossRefGoogle Scholar
  51. Panzeri S, Schultz SR, Treves A, Rolls ET (1999) Correlations and the encoding of information in the nervous system. Proc. R. Soc. Lond. B Biol. Sci. 266: 1001-1012.CrossRefPubMedGoogle Scholar
  52. Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. J. Neurophysiol. 79: 1450-1460.PubMedGoogle Scholar
  53. Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H, Abeles M (1998) Spatiotemporal structure of cortical activity: Properties and behavioral relevance. J. Neurophysiol. 79: 2857-2874.PubMedGoogle Scholar
  54. Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus. J. Neurosci. 20: 5392-5400.PubMedGoogle Scholar
  55. Riehle A, Grün S, Diesmann M, Aertsen A (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278: 1950-1953.Google Scholar
  56. Rudolph M, Destexhe A (2001a) Correlation detection and resonance in neural systems with distributed noise sources. Phys. Rev. Lett. 86: 3662-3665.CrossRefPubMedGoogle Scholar
  57. Rudolph M, Destexhe A (2001b) Do neocortical pyramidal neurons display stochastic resonance? J. Comp. Neurosci. 11: 19-42.CrossRefGoogle Scholar
  58. Schwindt PC, CrillW E (1997) Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. J. Neurophysiol. 77: 2466-2483.PubMedGoogle Scholar
  59. Segundo JP (2000) Some thoughts about neural coding and spike trains. Biosystems 58: 3-7.CrossRefPubMedGoogle Scholar
  60. Segundo JP, Perkel DH, Moore GP (1966) Spike probability in neurones: Influence of temporal structure in the train of synaptic events. Kybernetik 3: 67-82.CrossRefPubMedGoogle Scholar
  61. Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4: 569-579.CrossRefPubMedGoogle Scholar
  62. Shadlen MN, Newsome WT (1995) Is there a signal in the noise? Curr. Opin. Neurobiol. 5: 248-250.CrossRefPubMedGoogle Scholar
  63. Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 18: 3870-3896.PubMedGoogle Scholar
  64. Shinomoto S, Sakai Y, Funahashi S (1999) The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput. 11: 935-951.CrossRefPubMedGoogle Scholar
  65. Smith DR, Smith GK (1965) A statistical analysis of the continuous activity of single cortical neurons in the cat unanesthetized isolated forebrain. Biophys. J. 5: 47-74.Google Scholar
  66. Softky WR (1994) Sub-millisecond coincidence detection in active dendritic trees. Neuroscience 58: 13-41.CrossRefPubMedGoogle Scholar
  67. Softky WR (1995) Simple codes versus efficient codes. Curr. Opin. Neurobiol. 5: 239-247.CrossRefPubMedGoogle Scholar
  68. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13: 334-350.PubMedGoogle Scholar
  69. Stein RB (1967) Some models of neuronal variability. Biophys. J. 7: 37-68.Google Scholar
  70. Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nature Neurosci. 1: 210-217.CrossRefPubMedGoogle Scholar
  71. Stuart G, Spruston N, Sakmann B, Häusser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20: 125-131.CrossRefPubMedGoogle Scholar
  72. Theunissen F, Miller JP (1995) Temporal encoding in nervous systems: A rigorous definition. J. Comput. Neurosci. 2: 149-162.PubMedGoogle Scholar
  73. Tovée MJ, Rolls ET, Treves A, Bellis RP (1993) Information encoding and the responses of single neurons in the primate temporal visual cortex. J. Neurophysiol. 70: 640-654.PubMedGoogle Scholar
  74. Traub RD, Miles R (1991) Neuronal Networks of the Hippocampus. Cambridge University Press.Google Scholar
  75. Troyer TW, Miller KD (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural. Comp. 9: 971-983.Google Scholar
  76. Tsodyks MV, Sejnowski T (1995) Rapid state switching in balanced cortical network models. Network 6: 111-124.Google Scholar
  77. Usher M, Stemmler M, Koch C, Olami Z (1994) Network amplification of local fluctuations causes high spike rate variability, fractal Tuning Neocortical Pyramidal Neurons 251 firing patterns and oscillatory local field potentials. Neural. Comp. 6: 795-836.Google Scholar
  78. Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A (1995) Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373: 515-518.CrossRefPubMedGoogle Scholar
  79. van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274: 1724-1726.CrossRefPubMedGoogle Scholar
  80. White EL (1989) Cortical Circuits. Birkhauser. Boston.Google Scholar
  81. Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370: 140-143.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Michael Rudolph
    • 1
  • Alain Destexhe
    • 1
  1. 1.Unité de Neuroscience Intégratives et ComputationnellesGif-sur-YvetteFrance

Personalised recommendations