Assessment of the Results from the Phase I/II Boron Neutron Capture Therapy Trials at the Brookhaven National Laboratory from a Clinician's Point of View
- 121 Downloads
- 10 Citations
Abstract
Boron neutron capture therapy (BNCT) represents a promising modality for a relatively selective radiation dose delivery to the tumor tissue. The key to effective BNCT of tumors such as glioblastoma multiforme (GBM) is the homogeneous preferential accumulation of 10B in the tumor, including the infiltrating GBM cells, as compared to that in the vital structures of the normal brain. Provided that sufficiently high tumor 10B concentration (∼109 boron-10 atoms/cell) and an adequate thermal neutron fluence (∼109 neutrons/cm2) are achieved, it is the ratio of the 10B concentration in tumor cells to that in the normal brain cells and the blood that will largely determine the therapeutic gain of BNCT.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Farr LE, Sweet WH, Robertson JS, Foster CG, Locksley HG, Sutherland DL, Mendelsohn ML, Stickley EE: Neutron capture therapy with boron in the treatment of glioblastoma multiforme. Am J Roentgenol 71: 279–291, 1954Google Scholar
- 2.Slatkin DN, Stoner RD, Rosander KM, Kalef-Ezra JA, Laissue JA: Central nervous system radiation syndrome in mice from preferential 10B(n,α)7Li irradiation of brain vasculature. Proc Natl Acad Sci USA 85: 4020–4024, 1988Google Scholar
- 3.Sweet WH: Early history of development of boron neutron capture therapy of tumors. J Neuro-Oncol 33: 19–26, 1997Google Scholar
- 4.Asbury AK, Ojemann RG, Nielsen SL, Sweet WH: Neuropathologic study of fourteen cases of malignant brain tumor treated by boron-10 slow neutron capture radiation. J Neuropathol Exp Neurol 31: 278–303, 1972Google Scholar
- 5.Godwin JT, Farr LE, Sweet WH, Robertson JS: Pathological study of eight patients with glioblastoma multiforme treated by neutron capture therapy using boron 10. Cancer 8: 601–615, 1955Google Scholar
- 6.Slatkin DN: A history of boron neutron capture therapy of brain tumors: postulation of a brain radiation dose tolerance limit. Brain 114: 1609-1629, 1991 108Google Scholar
- 7.Nakagawa Y, Hatanaka H: Boron neutron capture therapy: clinical brain tumor studies. J Neuro-Oncol 33: 105–115, 1997Google Scholar
- 8.Laramore GE, Spence AM: Boron neutron capture therapy (BNCT) for high-grade gliomas of the brain: a cautionary note. Int J Radiat Oncol Biol Phys 36: 241–246, 1996Google Scholar
- 9.Fairchild RG, Kalef-Ezra J, Saraf SK, Fiarman S, Ramsey E, Wielopolski L, Laster BH, Wheeler FJ: Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). Basic Life Sci 54: 185–199, 1990Google Scholar
- 10.Liu HB, Brugger RM, Greenberg DD, Rorer DC, Hu JP, Hauptman HM: Enhancement of the epithermal neutron beam used for boron neutron capture therapy. Int J Radiat Oncol Biol Phys 28: 1149–1156, 1994Google Scholar
- 11.Davis FG, Freels S, Grutsch J, Barlas S, Brem S: Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on surveillance, epidemiology, and end results (SEER) data, 1973-1991. J Neurosurg 88: 1–10, 1998Google Scholar
- 12.Mehta MP, Masciopinto J, Rozental J, Levin A, Chappell R, Bastin K, Miles J, Turski P, Kubsad S, Mackie T, Kinsella T: Stereotactic radiosurgery for glioblastoma multiforme: report of a prospective study evaluating prognostic factors and analyzing long-term survival advantage. Int J Radiat Oncol Biol Phys 30: 541–549, 1994Google Scholar
- 13.Curran WJ Jr, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, Chang CH, Rotman M, Asbell SO, Krisch RE, Nelson DF: Recursive partitioning analysis of prognostic factors in three radiation therapy oncology group malignant glioma trials. J Natl Cancer Inst 85: 704–710, 1993Google Scholar
- 14.Scott CB, Scarantino C, Urtasun R, Movsas B, Jones CU, Simpson JR, Fischbach AJ, Curran WJ Jr: Validation and predictive power of radiation therapy oncology group (RTOG)recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90–06. Int J Radiat Oncol Biol Phys 40: 51–55, 1998Google Scholar
- 15.Lantos P, Vandenberg SR, Kleihues P: Tumors of the nervous system. In: Graham DI, Lantos Pl (eds) Greenfields Neuropathology Oxford University Press Inc., New York pp 612–613, 1997Google Scholar
- 16.Halperin EC, Burger PC, Bullard DE: The fallacy of the localized supratentorial malignant glioma. Int J Radiat Oncol Biol Phys 15: 505–509, 1988Google Scholar
- 17.Sullivan FJ, Herscher LL, Cook JA, Smith J, Steinberg SM, Epstein AH, Oldfield EH, Goffman TE, Kinsella TJ, Mitchell JB, Glatstein E: National Cancer Institute (phase II) study of high-grade glioma treated with accelerated hyperfractionated radiation and iododeoxyuridine: results in anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 30: 583–590, 1994Google Scholar
- 18.Gabel D, Foster S, Fairchild RG:The Monte Carlo simulation of the biological effect of the 10B(n, α)7Li reaction in cells and tissue and its implication for boron neutron capture therapy. Radiat Res 111(1): 14–25, 1987Google Scholar
- 19.Thompson CB, Sanders JE, Flournoy N, Buckner CD, Thomas ED: The risks of central nervous system relapse and leukoencephalopathy in patients receiving marrow transplants for acute leukemia. Blood 67: 195–199, 1986Google Scholar
- 20.Kemper TL, O'Neil R, Caveness WF: Effects of single dose supervoltage whole brain radiation in macaca mulatta. J Neuropathol Exp Neurol 36: 916–940, 1977Google Scholar
- 21.Fike JR, Gobbel GT: Central nervous system radiation injury in large animal models. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation Injury to the Nervous System. Raven Press, New York, pp 113–135, 1991Google Scholar
- 22.Huiskamp R, Gavin PR, Coderre JA, Phillips KHI, Wheeler FJ: Brain tolerance in dogs to boron neutron capture therapy with borocaptate sodium (BSH) or boronophenylalanine (BPA). In: Mishima Y (ed) Cancer Neutron Capture Therapy. Plenum Press, Raven Press, pp 591–598, 1996Google Scholar
- 23.Slatkin DN: A history of boron neutron capture therapy of brain tumor, Postulation of a brain radiation dose tolerance limit. Brain 114: 1609–1629, 1991Google Scholar
- 24.Morris GM, Coderre JA, Hopewell JW, Micca PL, Nawrocky MM, Liu HB, Bywaters A: Response of the central nervous system to boron neutron capture irradiation: evaluation using rat spinal cord model. Radiother Oncol 32(3): 249–255, 1994Google Scholar
- 25.Engenhart R, Kimmig BN, Hover K-H, Wowra B, Romahn J, Lorenz WJ, van Kaick G, Wannemacher M: Long-term follow-up brain metastases treated by percutaneous stereotactic single high-dose irradiation. Cancer 71: 1353–1361, 1993Google Scholar
- 26.Elowitz EH, Bergland RM, Coderre JA, Joel DD, Chadha M, Chanana AD: Biodistribution of p-boronophenylalanine in patients with glioblastoma multiforme for use in boron neutron capture therapy. Neurosurgery 42(3): 463–469, 1998Google Scholar
- 27.Coderre JA, Chanana AD, Joel DD, Elowitz EH, Micca PL, Nawrocky MM, Chadha M, Gebbers JO, Shady M, Peress NS, Slatkin DN: Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity. Radiat Res 149(2): 163–170, 1998Google Scholar
- 28.Nigg DW, Wheeler FJ, Wessol DE, Capala J, Chadha M: Computational dosimetry and treatment planning for boron neutron capture therapy. J Neuro-Oncol 33: 93–104, 1997Google Scholar
- 29.Nigg DW, Wheeler FJ, Wessol DE, Wemple CA, Babcock R, Capala J: Some recent developments in treatment planning software and methodology for BNCT. Proceedings of the Seventh International Symposium on Neutron Capture Therapy for Cancer, Zurich, CH. September 4-7 1996. In: Larsson B, Crawford J, Weinreich R(eds) Advances in Neutron Capture Therapy Vol I, Medicine and Physics. Elsevier, Amsterdam, pp 91–94, 1997Google Scholar
- 30.Wessol DE, Wheeler FJ: Creating and using a type of freeform geometry in Monte Carlo particle transport. Nucl Sci Eng 113: 314–323, 1993Google Scholar
- 31.Wheeler F, Nigg DW: Three-dimensional radiation dose distribution analysis for boron neutron capture therapy. Nucl Sci Eng 110: 16–31, 1992Google Scholar
- 32.Chanana AD, Capala J, Chadha M, Coderre JA, Diaz AZ, Elowitz E H, Iwai J, Joel DD, Liu HB, Ma R, Pendzick N Peress NS, Shady MS, Slatkin DN, Tyson GW, Wielopolski L: Boron neutron capture therapy for glioblastoma multiforme: interim results from the Phase I/II doseescalation studies. Neurosurgery 44(6): 1182-1192; 1999 109Google Scholar
- 33.Cox JD, Stetz J, Pajak TF: Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31(5): 1341–1346, 1995Google Scholar
- 34.Diaz AZ, Capala J, Ma R, Chanana AD: Local tumor progression in zone of peritumor vasogenic edema following boron neutron capture therapy for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 42(Suppl 1): 264, 1998Google Scholar
- 35.Barker FG, Chang SM, Gutin PH, Malec MK, McDermott MW, Prados MD, Wilson CB: Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 42(4): 709–720, 1998Google Scholar
- 36.Diaz AZ, Capala J, Chanana AD, Coderre JA, Ma R: Retrospective review of patients undergoing palliative photon radiotherapy after recurrence following boron neutron capture therapy for glioblastoma multiforme. Radiology 213(Suppl 1): 238, 1999Google Scholar
- 37.Aziz T, Peress NS, Diaz A, Capala J, Chanana A: Postmortem neuropathological features secondary to boron neutron capture therapy for glioblastoma multiforme. J Neuropathol Exp Neurol 59(1): 62–73, 2000Google Scholar
- 38.Diaz AZ, Chanana AD, Capala J, Chadha M, Coderre J, Elowitz EH, Iwai J, Joel DD, Liu HB, Ma R, Pendzick N, Preess NS, Shady MS, Slatkin DN, Tyson GW, Wielopolski L: Boron neutron capture therapy for glioblastoma multiforme: results from the initial phase I/II dose escalation studies. In: Hawthorne MF, Shelly K, Wiersima RJ (eds) Frontiers in Neutron Capture Therapy. Kluwer Academic/ Plenum Publisher, New York, pp 61–72, 2001Google Scholar
- 39.Fitzek MM, Thornton AF, Rabinov JD, Lev MH, Pardo FS, Munzenrider JE, Okunieff P, Bussiere M, Braun I, Hochberg FH, Hedley-Whyte ET, Liebsch NJ, Harsh GR 4th: Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a phase II prospective trial. J Neurosurg 91(2): 251–260, 1999Google Scholar
- 40.Laramore GE, Griffin TW, Gerdes AJ, Parker RG: Fast neutron and mixed (neutron/photon) beam teletherapy for grades III and IV astrocytomas. Cancer 42: 96–103, 1978Google Scholar
- 41.Laramore GE, Wheeler FJ, Wessol DE, Stelzer KJ, Griffin TW: A tumor control curve for malignant gliomas derived from fast neutron radiotherapy data: implications for treatment delivery and compound selection. Proceedings of the Seventh International Symposium on Neutron Capture Therapy for Cancer, Zurich, CH, September 4-7, 1996. In: Larsson B, Crawford J, Weinreich R (eds) Advances in Neutron Capture Therapy Vol II, Chemistry and Biology. Elsevier, Amsterdam, pp 580–587, 1997Google Scholar
- 42.Jain RK: Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 9(3): 253–266, 1990Google Scholar
- 43.Jain RK: Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1(Review): 241-263, 1999 (Review)Google Scholar
- 44.Smith DR, Chandra S, Coderre JA, Morrison GH: Ion microscopy imaging of 10B from p-boronophenylalanine in a brain tumor model for boron neutron capture therapy. Cancer Res 56(19): 4302-4306, 1996sGoogle Scholar