High-Level Cache Modeling for 2-D Discrete Wavelet Transform Implementations

  • Y. Andreopoulos
  • P. Schelkens
  • G. Lafruit
  • K. Masselos
  • J. Cornelis


The main implementations of the 2-D binary-tree discrete wavelet decomposition are theoretically analyzed and compared with respect to data-cache performance on instruction-set processor-based realizations. These implementations include various image-scanning techniques, from the classical row-column approach to the block-based and line-based methods, which are proposed in the framework of multimedia-coding standards. Analytical parameterized equations for the prediction of data-cache misses under general realistic assumptions are proposed. The accuracy and the consistency of the theory are verified through simulations on test platforms and a comparison is made with the results from a real platform.

cache memories discrete wavelet transform implementations theoretical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO/IEC JTC 1/SC29/WG1, FCD 15444-1, “JPEG 2000 Image Coding System”.Google Scholar
  2. 2.
    ISO/IEC JTC1/SC29/WG11, FCD 14496-1, “Coding of Moving Pictures and Audio”.Google Scholar
  3. 3.
    P. Schelkens, “MultidimensionalWavelet Image Coding,” Ph.D. Thesis, Vrije Universiteit Brussel, Dept. ETRO, 2001.Google Scholar
  4. 4.
    C. Chrysafis and A. Ortega, “Line-Based, Reduced Memory, Wavelet Image Compression,” IEEE Trans. Image Proc., vol. 9, no. 3, 2000, pp. 378-389.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    E. Ordentlich, D. Taubman, M. Weinberger, and G. Seroussi, “Memory Efficient Scalable Line-Based Image Coding,” in Proc. of the 1999 Data Compression Conference'99, 1999, pp. 218-227.Google Scholar
  6. 6.
    G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, and I. Bolsens, “Optimal Memory Organization for Scalable Texture Codecs in MPEG-4,” IEEE Trans. Circuits & Systems for Video Tech., vol. 9, no. 2, 1999, pp. 218-243.CrossRefGoogle Scholar
  7. 7.
    M. Vishwanath, “The Recursive Pyramid Algorithm for the Discrete Wavelet Transform,” IEEE Trans. Signal Proc., vol. 42, 1994, pp. 673-676.CrossRefGoogle Scholar
  8. 8.
    G. Lafruit, L. Nachtergaele, B. Vanhoof, and F. Catthoor, “The LocalWavelet Transform:AMemory-Efficient, High-Speed Architecture Optimized to a Region-Oriented Zero-Tree Coder,” Integrated Computer-Aided Engineering, vol. 7, no. 2, 2000, pp. 89-103.Google Scholar
  9. 9.
    Y. Andreopoulos, N.D. Zervas, P. Schelkens, T. Stouraitis, C.E. Goutis, and J. Cornelis, “AWavelet-Tree Image-Coding System with Efficient Memory Utilization,” in Proc. of the 2001 IEEE International Conf. on Accoustics Speech and Signal Processing, vol. 3, 2001, pp. 1709-1712.CrossRefGoogle Scholar
  10. 10.
    C. Chakrabarti and C. Mumford, “Efficient Realizations of Encoders and Decoders Based on the 2-D DiscreteWavelet Transforms,” IEEE Trans. VLSI Syst., vol. 7, no. 3, 1999, pp. 289-298.CrossRefGoogle Scholar
  11. 11.
    Y. Andreopoulos, P. Schelkens, and J. Cornelis, “Analysis of Wavelet-Transform Implementations for Image and Texture Coding Applications in Programmable Platforms,” in Proc. of the 2001 IEEE Signal Processing Systems, 2001, pp. 273-284.Google Scholar
  12. 12.
    F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle, “Custom Memory Management Methodology-Exploration of Memory Organisation for Embedded Multimedia System Design,” ISBN 0-7923-8288-9, Kluwer Academic Publishers, Boston, 1998.Google Scholar
  13. 13.
    P. Pirsch, H.-J. Stolberg, Y.-K. Chen, and S.Y. Kung, “Implementation of Media Processors,” IEEE Signal Processing Magazine, no. 4, 1997, pp. 48-51.CrossRefGoogle Scholar
  14. 14.
    S.K. Przybylski, Cache and Memory Hierarchy Design-A Performance-Directed Approach, San Fransisco: Morgan-Kaufmann, 1990.Google Scholar
  15. 15.
    H. Komi and A. Ortega, “Analysis of Cache Efficiency in 2-D Wavelet Transform,” in Proc. of the 2001 IEEE International Conference on Multimedia and Expo, paper no TP11.06, 2001.Google Scholar
  16. 16.
    W. Sweldens, “Lifting Scheme: A New Philosophy in Biorthogonal Wavelet Constructions,” in Proc. SPIE-2569, Wavelet Applications in Signal and Image Processing III, A.F. Laine and M. Unser (Eds.), pp. 68-79, 1995.Google Scholar
  17. 17.
    D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version 2.0,” Tech. Report #1342, Un. Of Winsconsin-Madison, Computer Sciences Dept., Scholar
  18. 18.
    Intel Corp., “Intel's Architecture Software Developer's Manual-Volume 1,” 1997.Google Scholar
  19. 19.
    Intel Corp., “VTune Performance Analyzer v4.5,” http://developer. Scholar
  20. 20.
    Cache Modeling for DWT Implementations, http://www.etro., in web-pages related to multimedia activities.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Y. Andreopoulos
    • 1
  • P. Schelkens
    • 1
  • G. Lafruit
    • 2
  • K. Masselos
    • 3
  • J. Cornelis
    • 1
  1. 1.Dept. ETROVrije Universiteit Brussel/IMECBrusselsBelgium
  2. 2.Inter-University Micro-Electronics Center—IMECLeuvenBelgium
  3. 3.Development Programs DepartmentIntracom S.A.AthensGreece

Personalised recommendations