Surveys in Geophysics

, Volume 24, Issue 2, pp 117–138

The Earth's Climate in the Next Hundred Thousand years (100 kyr)

  • A. Berger
  • M. F. Loutre
  • M. Crucifix
Article

Abstract

One of the most striking features of the Quaternary paleoclimate records remains the so-called 100-kyr cycle which is undoubtedly linked to the future of our climate. Such a 100-kyr cycle is indeed characterised by long glacial periods followed by a short-interglacial (∼10–15 kyr long). As we are now in an interglacial, the Holocene, the previous one (the Eemian, which corresponds quite well to Marine Isotope Stage 5e, peaking at ∼125 kyr before present, BP) was assumed to be a good analogue for our present-day climate. In addition, as the Holocene is 10 kyr long, paleoclimatologists were naturally inclined to predict that we are quite close to the next ice age. Simulations using the 2-D climate model of Louvain-la-Neuve show, however, that the current interglacial will most probably last much longer than any previous ones. It is suggested here that this is related to the shape of the Earth's orbit around the Sun, which will be almost circular over the next tens of thousands of years. As this is primarily related to the 400-kyr cycle of eccentricity, the best and closest analogue for such a forcing is definitely Marine Isotopic Stage 11 (MIS-11), some 400 kyr ago, not MIS-5e. Because the CO2 concentration in the atmosphere also plays an important role in shaping long-term climatic variations – especially its phase with respect to insolation – a detailed reconstruction of this previous interglacial from deep sea and ice records is urgently needed. Such a study is particularly important in the context of the already exceptional present-day CO2 concentrations (unprecedented over the past million years) and, even more so, because of even larger values predicted to occur during the 21st century due to human activities.

astronomical theory of paleoclimates climatic fluctuations climatic predictions insolation variations M. Milankovitch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnola, J.M., Raynaud, D., Korotkevich, Y.S., and Lorius, C.: 1987, Vostok Ice Core Provides 160,000-Year Record of Atmospheric CO2, Nature 329(6138), 408–414.Google Scholar
  2. Berger, A.: 1978, Long-Term Variations of Daily Insolation and Quaternary Climatic Changes, J. Atmos. Sci. 35(12), 2362–2367.Google Scholar
  3. Berger, A.: 1995, Modelling the Response of the Climate System to Astronomical Forcing. In: A. Henderson-Sellers (ed.), Future Climates of the World, A Modelling Perspective and H.E. Landsberg (ed.), World Survey of Climatology, Elsevier Science Publishers, Amsterdam, Vol. 16, pp. 21–69.Google Scholar
  4. Berger, A.: 2001, The Role of CO2, Sea Level and Vegetation during the Milankovitch Forced Glacial-Interglacial Cycles. In: L. Bengtsson and CI.U. Hammer (eds.), Geosphere-Biosphere Interactions and Climate, Cambridge University Press, New York, pp. 119–146.Google Scholar
  5. Berger, A. and Loutre, M.F.: 1996, Modelling the Climate Response to Astronomical and CO2 Forcings, Comptes Rendus de l'Académie des Sciences, Vol. Tome 323-série IIA, No. 1, pp. 1–16.Google Scholar
  6. Berger, A. and Loutre, M.F.: 1997, Paleoclimate Sensitivity to CO2 and Insolation, Ambio 26(1), 32–37.Google Scholar
  7. Berger, A. and Loutre, M.F.: 2002, Climate 400,000 Years Ago, a Key to the Future? In: A. Droxler, L. Burckle and R. Poore (eds.), Marine Isotope Stage 11: An Extreme Interglacial, AGU monograph (in press).Google Scholar
  8. Berger, A., Gallée, H., and Mélice, J.L.: 1991, The Earth's Future Climate at the Astronomical Time Scale. In: CI. Goodess and J. Palutikof (eds.), Future Climate Change and Radioactive Waste Disposal, NIREX Safety Series NSS/R257, pp. 148–165.Google Scholar
  9. Berger, A., Loutre, M.F., and Tricot, Ch.: 1993a, Insolation and Earth's Orbital Periods, J. Geophys. Res. 98(D6), 10,341–10,362.Google Scholar
  10. Berger, A., Gallée, H., and Tricot, C.: 1993b, Glaciation and Deglaciation Mechanisms in a Coupled 2-D Climate-Ice Sheet Model, J. Glaciol. 39(131), 45–49.Google Scholar
  11. Berger, A., Tricot, C., Gallée, H., and Loutre, M.F.: 1993c, Water Vapour, CO2 and Insolation over the Last Glacial-Interglacial Cycles, Phil. Trans. Roy. Soc. Lond., B 341, 253–261.Google Scholar
  12. Berger, A., Loutre, M.F., and Gallée, H.: 1998b, Sensitivity of the LLN Climate Model to the Astronomical and CO2 Forcings over the Last 200 kyr, Climate Dynamics 14, 615–629.Google Scholar
  13. Berger, A., Loutre, M.F., and Mélice, J.L.: 1998a, Instability of the Astronomical Periods from 1.5 Myr BP to 0.5 Myr AP, Paleoclimates, Data and Modelling 2(4), 239–280.Google Scholar
  14. Berger, A., Li, X.S., and Loutre, M.F.: 1999, Modelling Northern Hemisphere Ice Volume over the Last 3 Ma, Quaternary Sci. Rev. 18(1), 1–11.Google Scholar
  15. Broccoli, A.J.: 1994, Global Change: Learning from Past Climates, Nature 371(6495), 282.Google Scholar
  16. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., and Totterdell, I.J.: 2000, Acceleration of Global Warming due to Carbon-Cycle Feedbacks in a Coupled Climate Model, Nature 408(6809), 184–187.Google Scholar
  17. Crowley, T.J.: 1990, Are There any Satisfactory Geologic Analogs for a Future Greenhouse Warming? J. Climate 3(11), 1282–1292.Google Scholar
  18. Crucifix, M., Loutre, M.F., Lambeck, K., and Berger, A.: 2001, Effect of Isostatic Rebound on Modelled Ice Volume Variations during the Last 200 kyr, Earth Planet. Sci. Lett. 184, 623–633.Google Scholar
  19. Crutzen, P.J. and Stoermer, E.S.: 2000, The Anthropocene, IGBP Newsletter 41, 17–18.Google Scholar
  20. Dahl-Jensen, D., Mosegaard, N., Gundestrup, N., Clow, G.D., Johnsen, S.J., Hansen, A.W., and Balling, N.: 1998, Past Temperatures Directly from the Greenland Ice Sheet, Science 282(5387), 268–271.Google Scholar
  21. Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidborg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bend, G.: 1993, Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record, Nature 364, 218–220.Google Scholar
  22. Gallée, H.: 1989, Conséquences pour la prochaine glaciation d'une disparition éventuelle de la calotte glaciaire recouvrant le Groenland. Scientific Report 1989/7, Institut d'Astronomie et de Géophysique G. Lemaître, Université catholique de Louvain.Google Scholar
  23. Gallée, H., van Ypersele, J.P., Fichefet, T., Tricot, C., and Berger, A.: 1991, Simulation of the Last Glacial Cycle by a Coupled, Sectorially Averaged Climate-Ice Sheet Model, I. The Climate Model, J. Geophys. Res. 96(D7), 13,139–13,161.Google Scholar
  24. Gallée H., van Ypersele, J.P., Fichefet, T., Marsiat, I., Tricot, C., and Berger, A.: 1992, Simulation of the Last Glacial Cycle by a Coupled Sectorially Averaged Climate-Ice Sheet Model. II. Response to Insolation and CO2 Variation, J. Geophys. Res. 97(D14), 15,713–15,740.Google Scholar
  25. Goodess, C.M., Palutikof, J.P., and Davies, T.D.: 1992, The Nature and Causes of Climatic Change, Assessing the Long-Term Future, Lewis Publishers, Ann Arbor, 248pp.Google Scholar
  26. Hays, J., Imbrie, J., and Shackleton, N.: 1976, Variations in the Earth's Orbit: Pacemaker of the Ice Ages, Science 194, 1121–1132.Google Scholar
  27. Hodell, D.A., Charles, Ch.D., and Ninnemann, U.S.: 2000, Comparison of Interglacial Stages in the South Atlantic Sector of the Southern Ocean for the Past 450 kyr: Implication for Marine Isotopic Stage (MIS)11, Global and Planetary Change 24, 7–26.Google Scholar
  28. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A. (eds.): 2001, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press (x + 881pp).Google Scholar
  29. Imbrie, J. and Imbrie, J.Z.: 1980, Modeling the Climatic Response to Orbital Variations, Science 207(29), 943–953.Google Scholar
  30. Johnsen, S.J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: 1995, Greenland Palaeotemperatures Derived from GRIP Bore Hole Temperature and Ice Core Isotope Profiles, Tellus 47B(5), 624–629.Google Scholar
  31. Jouzel, J., Barkov, N.I., Barnola, J.M., Bender, M., Chapellaz, J., Genthon, C., Kotlyakov, V.M., Lipenkov, V., Lorius, C., Petit, J.R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., and Yiou, P.: 1993, Vostok Ice Cores: Extending the Climatic Records over the Penultimate Glacial Period, Nature 364(6436), 407–412.Google Scholar
  32. Kukla, G.J. and Kukla, H.J.: 1972, Insolation Regime of Interglacials, Quaternary Res. 2(3), 412–424.Google Scholar
  33. Kukla, G. and Went, E. (eds.): 1992, Start of a Glacial, NATO ASI Series I, Vol. 3, 353pp.Google Scholar
  34. Kukla, G.J., Matthews, R.K., and Mitchell, M.J.: 1972, Present Interglacial: How and When Will It End? Quaternary Res. 2(3), 261–269.Google Scholar
  35. Kukla, G.J., McManus, J.F., Rousseau, D.D., and Chuine, I.: 1997, How Long and How Stable was the Last Interglacial? Quaternary Sci. Rev. 16(6), 605–612.Google Scholar
  36. Ledley, T.S.: 1995, Summer Solstice Solar Radiation, the 100-kyr Ice Age Cycle, and the Next Ice Age, Geophys. Res. Lett. 22(20), 2745–2748.Google Scholar
  37. Li, X.S., Berger, A., and Loutre, M.F.: 1998, CO2 and Northern Hemisphere Ice Volume Variations over the Middle and Late Quaternary, Climate Dynamics 14, 537–544.Google Scholar
  38. Loutre, M.F.: 1995, Greenland Ice Sheet over the Next 5000 Years, Geophys. Res. Lett. 22(7), 783–786.Google Scholar
  39. Loutre, M.F. and Berger, A.: 2000a, No Glacial-Interglacial Cycle in the Ice Volume Simulated under a Constant Astronomical Forcing and a Variable CO2, Geophys. Res. Lett. 27(6), 783–786.Google Scholar
  40. Loutre, M.F. and Berger, A.: 2000b, Future Climatic Changes: Are We Entering an Exceptionally Long Interglacial? Climatic Change 46, 61–90.Google Scholar
  41. Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, Jr., T.C., and Shackleton, N. J.: 1987, Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy, Quaternary Res. 27, 1–29.Google Scholar
  42. Mitchell, J.F.B.: 1990, Greenhouse Warming: Is the Mid-Holocene a Good Analogue? J. Climate 3(11), 1177–1192.Google Scholar
  43. Mitchell Jr., J.M.: 1972, The Natural Breakdown of the Present Interglacial and its Possible Intervention by Human Activities, Quaternary Research 2, 436–445.Google Scholar
  44. Oerlemans, J. and Van der Veen, C.J.: 1984, Ice Sheets and Climate, D. Reidel, Dordrecht.Google Scholar
  45. Peltier, W.R. and Vettoretti, G.: 2001, Glacial Inception in the Greenhouse: Coupled A-O GCM Simulation of the 5e-5d Transition and the Next. In: P. Chylek and L. Lesins (eds.), Global Warming and the Next Ice Age, Extended Abstracts, Dalhousie University, CMOS, AMS and ESA, p. 256.Google Scholar
  46. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chapellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: 1999, Climate and Atmospheric History of the Past 420,000 Years from Vostok Ice Core, Antarctica, Nature 399(6735), 429–436.Google Scholar
  47. Saltzman, B., Maasch, K.A., and Verbitsky, M.Y.: 1993, Possible Effects of Anthropogenically-Increased CO2 on the Dynamics of Climate: Implications for Ice Age Cycles, Geophys. Res. Lett. 20(11), 1051–1054.Google Scholar
  48. Shackleton, N.J., Hall, M.A., Line, J., and Cang, Shuxi: 1983, Carbon Isotope Data in Core V19–30 Confirm Reduced Carbon Dioxide Concentration in the Ice Age Atmosphere, Nature 306(5941), 319–322.Google Scholar
  49. Winograd, I.J., Landwehr, J.M., Ludwig, K.R., Coplen, T.B., and Riggs, A.C.: 1997, Duration and Structure of the Past Four Interglacials, Quaternary Res. 48(2), 141–154.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A. Berger
    • 1
  • M. F. Loutre
    • 1
  • M. Crucifix
    • 1
  1. 1.Institut d'Astronomie et de Géophysique G. LemaîtreUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.The Hadle CentreMet OfficeBracknell, BerkshireU.K

Personalised recommendations