Applications of Mathematics

, Volume 43, Issue 3, pp 173–205 | Cite as

Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity

  • Pavel Krejčí
  • Jürgen Sprekels


In this paper, we develop a thermodynamically consistent description of the uniaxial behavior of thermovisco-elastoplastic materials for which the total stress σ contains, in addition to elastic, viscous and thermic contributions, a plastic component σ p of the form σp(x,t)=Ρ[ε, θ(x,t)](x,t). Here ∈ and θ are the fields of strain and absolute temperature, respectively, and {Ρ[·, θ]}θ>0 denotes a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of momentum and energy balance equations governing the space-time evolution of the material forms a system of two highly nonlinearly coupled partial differential equations involving partial derivatives of hysteretic nonlinearities at different places. It is shown that an initial-boundary value problem for this system admits a unique global strong solution which depends continuously on the data.

thermoplasticity viscoelasticity hysteresis Prandtl-Ishlinskii operator PDEs with hysteresis thermodynamical consistency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BS1]
    Brokate, M., Sprekels, J.: Existence and optimal control of mechanical processes with hysteresis in viscous solids. IMA J. Appl. Math. 43 (1989), 219–229.Google Scholar
  2. [BS]
    Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer-Verlag, New York, 1996.Google Scholar
  3. [D]
    Dafermos, C. M.: Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional thermoviscoelasticity. SIAM J. Math. Anal. 13 (1982), 397–408.Google Scholar
  4. [DH]
    Dafermos, C. M., Hsiao, L.: Global smooth thermomechanical processes in one-dimensional thermoviscoelasticity. Nonlin. Anal. TMA 6 (1982), 435–454.Google Scholar
  5. [Is]
    Ishlinskii, A. Yu.: Some applications of statistical methods to describing deformations of bodies. Izv. AN SSSR, Techn. Ser. 9 (1944), 583–590.Google Scholar
  6. [KP]
    Krasnosel'skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis. Springer-Verlag, Heidelberg, 1989; Russian edition. Nauka, Moscow, 1983.Google Scholar
  7. [K1]
    Krejčí, P.: Hysteresis and periodic solutions of semilinear and quasilinear wave equations. Math. Z. 193 (1986), 247–264.Google Scholar
  8. [K2]
    Krejčí, P.: A monotonicity method for solving hyperbolic problems with hysteresis. Apl. Mat. 33 (1988), 197–202.Google Scholar
  9. [K]
    Krejčí, P.: Hysteresis, convexity and dissipation in hyperbolic equations. Gakuto Int. Series Math. Sci. & Appl., Vol. 8. Gakkōtosho, Tokyo, 1996.Google Scholar
  10. [KS]
    Krejčí, P., Sprekels, J.: On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity. J. Math. Anal. Appl. 209 (1997), 25–46.Google Scholar
  11. [LC]
    Lemaitre, J., Chaboche, J.-L.: Mechanics of solid materials. Cambridge Univ. Press, 1990; French edition. Bordas, Paris, 1985.Google Scholar
  12. [L]
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.Google Scholar
  13. [M]
    Müller, I.: Thermodynamics. Pitman, New York, 1985.Google Scholar
  14. [P]
    Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Ang. Math. Mech. 8 (1928), 85–106.Google Scholar
  15. [S]
    Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin-Heidelberg, 1996.Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 1998

Authors and Affiliations

  • Pavel Krejčí
    • 1
  • Jürgen Sprekels
    • 1
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations