Statistics and Computing

, Volume 13, Issue 2, pp 153–162 | Cite as

Efficient computation of location depth contours by methods of computational geometry

  • Kim Miller
  • Suneeta Ramaswami
  • Peter Rousseeuw
  • J. Antoni Sellarès
  • Diane Souvaine
  • Ileana Streinu
  • Anja Struyf


The concept of location depth was introduced as a way to extend the univariate notion of ranking to a bivariate configuration of data points. It has been used successfully for robust estimation, hypothesis testing, and graphical display. The depth contours form a collection of nested polygons, and the center of the deepest contour is called the Tukey median. The only available implemented algorithms for the depth contours and the Tukey median are slow, which limits their usefulness. In this paper we describe an optimal algorithm which computes all bivariate depth contours in O(n2) time and space, using topological sweep of the dual arrangement of lines. Once these contours are known, the location depth of any point can be computed in O(log2n) time with no additional preprocessing or in O(log n) time after O(n2) preprocessing. We provide fast implementations of these algorithms to allow their use in everyday statistical practice.

bagplot bivariate median graphical display robust estimation Tukey depth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anagnostou E.G., Guibas L.J., and Polimenis V.G. 1990. Topological sweeping in three dimensions. In: Proceedings of 1st Annual SIGAL International Symposium on Algorithms, Springer-Verlag, Lecture Notes in Computer Science, vol. 450, pp. 310–317.Google Scholar
  2. Bai Z.-D. and He X. 1999. Asymptotic distributions of the maximal depth estimators for regression and multivariate location. The Annals of Statistics 27: 1616–1637.Google Scholar
  3. de Berg M., van Kreveld M., Overmars M., and Schwarzkopf O. 1997. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin.Google Scholar
  4. Cleveland W.S. 1993. Visualizing Data. Hobart Press, Summit, New Jersey.Google Scholar
  5. Cole R., Sharir M., and Yap C.K. 1987. On k-hulls and related problems. SIAM Journal on Computing 15: 61–77.Google Scholar
  6. Dey T. 1998. Improved bounds on planar k-sets and related problems. Discrete and Computational Geometry 19: 373–382.Google Scholar
  7. Dobkin D.P. and Souvaine D.L. 1987. Computational Geometry-A User's Guide. Chapter 2 in: Schwartz J.T and Yap C.K. (Eds.), Advances in Robotics 1: Algorithmic and Geometric Aspects of Robotics, Lawrence Erlbaum Associates, pp. 43–93.Google Scholar
  8. Donoho D.L. and Gasko M. 1992. Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics 20: 1803–1827.Google Scholar
  9. Edelsbrunner H. 1987. Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin.Google Scholar
  10. Edelsbrunner H. and Guibas L.G. 1989. Topologically sweeping an arrangement. Journal of Computer and System Sciences 38: 165–194.Google Scholar
  11. Edelsbrunner H., Guibas L.J., and Stolfi J. 1986. Optimal point location in a monotone subdivision. SIAM Journal of Computing 15(2): 317–340.Google Scholar
  12. Edelsbrunner H. and Souvaine D. 1990. Computing median-of-squares regression lines and guided topological sweep. Journal of the American Statistical Association 85: 115–119.Google Scholar
  13. Hodges J.L. 1955. A bivariate sign test. The Annals of Mathematical Statistics 26: 523–527.Google Scholar
  14. Kirkpatrick D. 1983. Optimal search in planar subdivisions. SIAM Journal on Computing 12: 28–35.Google Scholar
  15. Langerman S. and Steiger W. 2000. Computing a Maximal Depth Point in the Plane. Proceedings 4th Japan Conference on Discrete and Computational Geometry, Lecture Notes in Computer Science, to appear.Google Scholar
  16. Liu R.Y. 1990. On a notion of data depth based on random simplices. The Annals of Statistics 18: 405–414.Google Scholar
  17. Liu R.Y., Parelius J., and Singh K. 1999. Multivariate analysis by data depth: Descriptive statistics, graphics and inference. The Annals of Statistics 27: 783–840.Google Scholar
  18. Liu R.Y. and Singh K. 1997. Notions of limiting P values based on data depth and bootstrap. Journal of the American Statistical Association 92: 266–277.Google Scholar
  19. Matoušek J. 1991. Computing the center of planar point sets. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 6: 221–230.Google Scholar
  20. Mitchell T. 2002. Point location in a nested set of convex hulls. Senior Design Project, EECS Department, Tufts University. <>Google Scholar
  21. Preparata F. and Shamos M.I. 1985. Computational Geometry: An Introduction. Springer-Verlag, New York.Google Scholar
  22. Rafalin E., Souvaine D., and Streinu I. 2002. Topological Sweep in Degenerate cases. Algorithms Engineering and Experiments (ALENEX 2002). Springer-Verlag Lecture Notes in Computer Science 2409: 155–165.Google Scholar
  23. Rosenberger H. 1990. Topological plane sweep implemented in C, University of Illinois at Urbana-Champaign.Google Scholar
  24. Rousseeuw P.J. 1984. Least median of squares regression. Journal of the American Statistical Association 79: 871–880.Google Scholar
  25. Rousseeuw P.J. and Ruts I. 1996. Algorithm AS 307: Bivariate location depth. Applied Statistics (JRSS-C) 45: 516–526.Google Scholar
  26. Rousseeuw P.J. and Ruts I. 1998. Constructing the bivariate Tukey median. Statistica Sinica 8: 827–839.Google Scholar
  27. Rousseeuw P.J., Ruts I., and Tukey J.W. 1999. The bagplot: A bivariate boxplot. The American Statistician 53: 382–387.Google Scholar
  28. Rousseeuw P.J. and Struyf A. 1998. Computing location depth and regression depth in higher dimensions. Statistics and Computing 8: 193–203.Google Scholar
  29. Rousseeuw P.J. and Struyf A. 2002. Characterizing angular symmetry and regression symmetry. Journal of Statistical Planning and Inference, to appear.Google Scholar
  30. Ruts I. and Rousseeuw P.J. 1996. Computing depth contours of bivariate point clouds. Computational Statistics and Data Analysis 23: 153–168.Google Scholar
  31. Sarnak N. and Tarjan R.E. 1986. Planar point location using persistent search trees. Communications of the ACM 29: 669–679.Google Scholar
  32. Souvaine D. and Steele J.M. 1987. Efficient time and space algorithms for least median of squares regression. Journal of the American Statistical Association 82: 794–801.Google Scholar
  33. Tukey J.W. 1975. Mathematics and the picturing of data. Proceedings of the International Congress of Mathematicians, Vancouver 2: 523–531.Google Scholar
  34. Tukey J.W. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA.Google Scholar
  35. Wenger R. 1997. Helly-Type theorems and geometric transversals. In: Goodman J.E. and O'Rourke J. (Eds.), Handbook of Discrete and Computational Geometry, CRC Press, pp. 63–82.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Kim Miller
    • 1
  • Suneeta Ramaswami
    • 2
  • Peter Rousseeuw
    • 3
  • J. Antoni Sellarès
    • 4
  • Diane Souvaine
    • 5
  • Ileana Streinu
    • 5
  • Anja Struyf
    • 3
  1. 1.Department of Electrical Engineering and Computer ScienceTufts UniversityMedford
  2. 2.Department of Computer ScienceRutgers UniversityCamden
  3. 3.Department of Mathematics and Computer ScienceUniversity of AntwerpAntwerpBelgium
  4. 4.Institut d'Informàtica i AplicacionsUniversitat de GironaSpain
  5. 5.Department of Computer ScienceSmith CollegeNorthampton

Personalised recommendations