Journal of Statistical Physics

, Volume 90, Issue 5–6, pp 1481–1487 | Cite as

Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems

  • Gavin E. Crooks


An equality has recently been shown relating the free energy difference between two equilibrium ensembles of a system and an ensemble average of the work required to switch between these two configurations. In the present paper it is shown that this result can be derived under the assumption that the system's dynamics is Markovian and microscopically reversible.

Nonequilibrium statistical mechanics free energy work thermodynamic integration thermodynamic perturbation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78(14):2690-2693 (1997).Google Scholar
  2. 2.
    C. Jarzynski, Equilibrium free energy differences from nonequilibrium measurements: A master equation approach, Phys. Rev. E. 56(5):5018-5035 (1997).Google Scholar
  3. 3.
    D. L. Beveridge and F. M. DiCapua, Free energy via molecular simulation: Applications to chemical and biomolecular systems, Annu. Rev. Biophys. Biophys. Chem. 18:431-92 (1989).Google Scholar
  4. 4.
    T. P. Straatsma and J. A. McCammon, Computational alchemy, Annu. Rev. Phys. Chem. 43:407-435 (1992).Google Scholar
  5. 5.
    R. W. Zwanzig, High-temperature equation of state by a perturbation method: I. nonpolar gases, J. Chem. Phys. 22:1420-1426 (1954).Google Scholar
  6. 6.
    G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes(Clarendon Press, Oxford, 2nd edition, 1992).Google Scholar
  7. 7.
    S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics(North-Holland, Amsterdam, 1962).Google Scholar
  8. 8.
    D. Chandler, Introduction to Modern Statistical Mechanics(Oxford University Press, New York, 1987), pp. 165.Google Scholar
  9. 9.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21:1087-1092 (1953).Google Scholar
  10. 10.
    K. K. Mon and R. B. Griffiths, Chemical potential by gradual insertion of a particle in monte carlo simulation, Phys. Rev. A. 31:956-959 (1985).Google Scholar
  11. 11.
    E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106:620-630 (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Gavin E. Crooks
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyCalifornia

Personalised recommendations