Surveys in Geophysics

, Volume 24, Issue 2, pp 139–184

Effects on the Ionosphere Due to Phenomena Occurring Below it

  • E. Kazimirovsky
  • M. Herraiz
  • B. A. De La Morena
Article

Abstract

The terrestrial thermosphere and ionosphere form the most variable part of theEarth's atmosphere. Because our society depends on technological systems thatcan be affected by thermospheric and ionospheric phenomena, understanding,monitoring and ultimately forecasting the changes of the thermosphere–ionosphere system are of crucial importance to communications, navigation and the exploration of near-Earth space. The reason for the extreme variability of the thermosphere–ionosphere system isits rapid response to external forcing from various sources, i.e., thesolar ionizing flux, energetic charged particles and electric fields imposed via the interaction between the solar wind, magnetosphere and ionosphere, as well as coupling from below (“meteorological influences”) by the upward propagating, broad spectrum,internal atmospheric waves (planetary waves, tides, gravity waves) generated in thestratosphere and troposphere. Thunderstorms, typhoons, hurricanes, tornadoes andeven seismological events may also have observable consequences in the ionosphere.The release of trace gases due to human activity have the potential to cause changes inthe lower and the upper atmosphere.A brief overview is presented concerning the discoveries and experimentalresults that have confirmed that the ionosphere is subject to meteorologicalcontrol (especially for geomagnetic quiet conditions and for middle latitudes).D-region aeronomy, the winter anomaly of radiowave absorption, wave-liketravelling ionospheric disturbances, the non-zonality and regional peculiaritiesof lower thermospheric winds, sporadic-E occurrence and structure, spread-Fevents, the variability of ionospheric electron density profiles and Total ElectronContent, the variability of foF2, etc., should all be considered in connection withtropospheric and stratospheric processes. “Ionospheric weather”, as a part of spaceweather, (i.e., hour-to-hour and day-to-day variability of the ionospheric parameters)awaits explanation and prediction within the framework of the climatological, seasonal,and solar-cycle variations.

coupling internal gravity waves ionosphere meteorological influences middle atmosphere planetary waves seismological effects thermosphere tides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altadill, D.: 2000, Planetary wave type oscillations in the ionospheric F-region, Adv. Space Res. 26, 1287–1296.Google Scholar
  2. Altadill, D., Sole, J. G., and Apostolov, E. M.: 2001, Vertical structure of a gravity wave like oscillation in the ionosphere generated by the solar eclipse of August 11, 1999, J. Geophys. Res. 106, 21419–21428.Google Scholar
  3. Andrews, D. G., Holton, J. R., and Leovy, C. B.: 1987, Middle Atmosphere Dynamics, (monograph), International Geophysical Series, 40, Academic Press, New York, USA.Google Scholar
  4. Apostolov, E. M., Altadill, D., and Hanbaba, R.: 1998, Spectral energy contributions of quasiperiodic oscillations (2–35 days) to the variability of foF2, Ann. Geophysicae 16, 168–175.Google Scholar
  5. Arnold, N. F. and Robinson, T. R.: 2000, Amplification of the influence of solar flux variations on the winter stratosphere by planetary waves, Space. Sci. Rev. 94, 279–286.Google Scholar
  6. Bauer, S. J.: 1958a, Correlation between tropospheric and ionospheric parameters, Geofisica Pura e Applicata 40, 235–240.Google Scholar
  7. Bauer. S. J.: 1958b, An apparent ionospheric response to the passage of hurricanes, J. Geophys. Res. 63, 265–269.Google Scholar
  8. Bencze, P.: 1980, Height variation of wind shear deduced from ionospheric sporadic-E during stratospheric warmings, Acta Geod. Geoph. Lloret. 15, 247–256.Google Scholar
  9. Beynon, W. J. G. and Brown, G. M.: 1951, Geophysical and meteorological changes in the period January-April 1949, Nature 67, 1012–1014.Google Scholar
  10. Biagi, F., Piccolo, R., Ermini, A., Martellucci, S., Bellecci, C., Hayakawa, M., and Kingsley, S. P.: 2001, Disturbances in LF radio-signals as seismic precursors, Annali di Geofisica 44, 1011–1019.Google Scholar
  11. Bibl, K.: 1989, Examples of meteorological behaviour of the ionosphere, AGARD Conf. Proc. 441, 36–39.Google Scholar
  12. Bonchkovsky, V. F.: 1954, Variation of the gradient of the electric potential of the atmosphere as one of the possible precursors of earthquakes, Treatises of the Geophysical Institute of AS USSR 25, 192–206 (in Russian).Google Scholar
  13. Borisov, N., Chmyrev, V., and Rynbachek, S.: 2001, A new ionospheric mechanism of electromagnetic ELF precursors to earthquakes, J. Atmos. Sol-Terr. Phys. 63, 3–10.Google Scholar
  14. Boska, J. and Lastovichka, J.: 1996, Gravity wave activity in the lower ionosphere and in the F2 region-similarities and differences, Adv. Space Res. 18, 127–130.Google Scholar
  15. Boska, J., Marin, D., Miro, G., Herraiz, M., De la Morena, B. A., and Kazimirovsky, E. S.: 1999, AGW spectra in the electron density, in Proc. WG COST-251, Huelva, Spain, pp. 215–232.Google Scholar
  16. Bowhill, S. A.: 1969, Interaction between the stratosphere and ionosphere, Annals of IQSY (International Quiet Sun Year) 5, 83–95.Google Scholar
  17. Bremer, J.: 1992, Ionospheric trends in mid-latitudes as a possible indicator of the atmospheric greenhouse effect, J. Atmos. Terr. Phys. 54, 1505–1511.Google Scholar
  18. Bremer, J., Schminder, R., Greisiger, K. M., Hoffman, O., Kuerschner, D., and Singer, W.: 1997, Solar cycle dependence and long-term trends in the wind field of the mesosphere/lower thermosphere, J. Atmos. Sol.-Terr. Phys. 59, 497–509.Google Scholar
  19. Bremer, J.: 1998, Trends in the ionosphere E and F regions over Europe, Ann. Geophysicae 16, 986–996.Google Scholar
  20. Chmyrev, V. M., Isaev, N. V., Bilichenko, S. V., and Stanev, G.: 1989, Observation by space-borne detectors of electric fields and hydromagnetic waves in the ionosphere over an earthquake centre, Physics Earth Planet. Int. 77, 110–114.Google Scholar
  21. Chmyrev, V. M., Isaev, N. V., Serebryakova, O. N., Sorokin, V. M., and Sobolev, Ya. P.: 1997, Small scale plasma inhomogeneities and correlated ELF emissions in the ionosphere over a small earthquake region, J. Atmos. Sol-Terr. Phys. 59, 967–974.Google Scholar
  22. Chmyrev, V. M., Sorokin, V. M., and Pokhotelov, O. A.: 1999, Theory of small scale plasma density inhomogeneities produced by conductivity growth of the air above the future earthquake center, in M. Hayakawa (ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terra. Sci. Publ. Comp., Tokyo, pp. 759–776.Google Scholar
  23. Cho, M. and Rycroft, M. J.: 2001, Non-uniform ionization of the upper atmosphere due to the electrodynamic pulse from a horizontal lightning discharge, J. Atmos. Sol-Terr. Phys. 63, 559–580.Google Scholar
  24. Clemesha, B. R., Batista, P. P., and Simonich, D. M.: 1997, Long-term and solar cycle changes in the atmospheric sodium layer, J. Atmos. Sol.-Terr. Phys. 59, 1673–1678.Google Scholar
  25. Danilov, A. D., Kazimirovsky, E. S., Vergasova, G. V., and Khachikjan, G. Ya.: 1987, The meteorological effects in the ionosphere, (monograph), Hydrometeorological Press, Leningrad, Russia, (in Russian).Google Scholar
  26. Danilov, A. D.: 1998, Review of long-term trends in the upper mesosphere, thermosphere, and ionosphere, Adv. Space Res. 22, 907–915.Google Scholar
  27. Davies, K. and Baker, D. M.: 1965, Ionospheric effects observed around the time of the Alaskan earthquake of March, 1964, J. Geophys. Res. 70, 2251–2253.Google Scholar
  28. De la Morena, B. A. and Kazimirovsky, E. S.: 1996, The experimental investigation of the lower ionosphere response to forcing from above and below, Scientific Report INTA 1995, El Arenosillo, Spain.Google Scholar
  29. Djuth, F. T., Sulzer, M. P., Elder, J. H., and Wickwar, V. B.: 1997, High-resolution studies of atmosphere-ionosphere coupling at Arecibo Observatory, Puerto Rico, Radio Sci. 32, 2321–2344.Google Scholar
  30. Forbes, J.M.: 1991, Middle atmosphere tides and coupling between atmospheric regions, J. Geomag. Geoelectr. 43 (Suppl. Part 1), 597–609.Google Scholar
  31. Forbes, J. M. and Leveroni, S.: 1992, Quasi 16-day oscillation in the ionosphere, Geophys. Res. Lett. 19, 981–984.Google Scholar
  32. Forbes, J. M., Palo, S. E., and Marcos, F. A.: 1999, Longitudinal structures in lower thermosphere density, J. Geophys. Res. A104, 4773–4779.Google Scholar
  33. Forbes, J. M., Palo, S. E., and Zhiang, X.: 2000, Variability of the ionosphere, J. Atmos. Sol.-Terr. Phys. 62, 865–893.Google Scholar
  34. Gavrilov, N. M.: 1992, Internal gravity waves in the mesopause region: hydrodynamical sources and climatological patterns, Adv. Space Res. 12, 113–121.Google Scholar
  35. Geller, R. J. (ed.): 1996, Special Issue: Debate on VAN, Geophys. Res. Lett. 23, 1291–1452.Google Scholar
  36. Geller, R. J.: 1997, Earthquake prediction: a critical review, Geophys. J. Int. 131, 125–150.Google Scholar
  37. Geller, R. J., Jackson, D. D., Kagan Y., and Mulargia, F.: 1997, Earthquakes cannot be predicted, Science 275, 166.Google Scholar
  38. Gershman, B. N., Kazimirovsky, E. S., Kokourov, V. D., and Chernobrovkina, N. A.: 1984, Spread-F Events in the Ionosphere (monograph), Science Press, Moscow, Russia, (in Russian).Google Scholar
  39. Gokhberg, M. B., Morgounov, V. A., Yoshino, T., and Tomizawa, I.: 1982, Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan, J. Geophys. Res. 87, 7884–7888.Google Scholar
  40. Gokhberg, M. B., Morgounov, V. A., and Pokhotelov, O. A.: 1995, Earthquake Prediction: Seismoelectromagnetic Phenomena, Gordon and Breach, Amsterdam.Google Scholar
  41. Gokhberg, M. B., Gufeld, I. L., Rozhnoy, A. A., Marenko, V. F., Yampolsky, V. S., and Ponomarev, E. A.: 1989, Study of seismic influence on the ionosphere by super long-wave probing of the Earth-ionosphere waveguide, Phys. Earth Planet. Int. 57, 64–67.Google Scholar
  42. Golytsin, G. S., Semenov, A. I., Shefov, N. N., Fishkova, L. M., Lysenko, E. V., and Perov, S. P.: 1996, Long-term temperature trends in the middle and upper atmosphere, Geophys. Res. Lett. 23, 1741–1744.Google Scholar
  43. Goodwin, G. L.: 1980, An association between atmospheric disturbances at ground level and in the ionosphere, J. Atmos. Terr. Phys. 42, 899–906.Google Scholar
  44. Gossard, E. E. and Hooke, N. H.: 1975, Waves in the Atmosphere (monograph), Elsevier, New York.Google Scholar
  45. Gregory, J. B. and Manson, A. H.: 1975, Radiation temperatures and electron density, J. Atmos. Terr. Phys. 37, 645–653.Google Scholar
  46. Hargreaves, J. K.: 1992, The Solar-Terrestrial Environment. An Introduction to Geospace-The Science of the Terrestrial Upper Atmosphere, Ionosphere and Magnetosphere, (monograph), Cambridge University Press, UK.Google Scholar
  47. Hayakawa, M. (ed.): 1999, Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terra Scientific Publishing. Comp., Tokyo.Google Scholar
  48. Hayakawa, M. and Fujinawa, Y. (eds.): 1994, Electromagnetic Phenomena Related to Earthquake Prediction, Terra Scientific Publishing Comp., Tokyo.Google Scholar
  49. Hayakawa, M. and Molchanov, O. A.: 2000, Effect of earthquakes on the lower ionosphere as found by sub-ionospheric VLF propagation, Adv. Space Res. 26, 1273–1276.Google Scholar
  50. Hayakawa, M., Molchanov, O. A., Kodama, T., Afonin, V. V., and Akentieva, O. A.: 2000, Plasma density variations observed on a satellite possibly related to seismicity, Adv. Space Res. 26, 1277–1280.Google Scholar
  51. Hegai, V. V., Kim, V. P., and Nikiforova, L. I.: 1997, A possible generation mechanism for acousticgravity waves in the ionosphere before strong earthquakes, J. Earthquake Prediction Res. 6, 584–589.Google Scholar
  52. Henderson, T. R., Sonwalker, W. S., Helliwell, R. A., Inan, U. S., and Fraser-Smith, A. G.: 1993, A search for ELF/VLF emissions induced by earthquakes as observed in the ionosphere by the DE-2 satellite, J. Geophys. Res. 98, 9503–9514.Google Scholar
  53. Herraiz, M., Farelo, A., Cueto, M. and Mohíno, E.: 2000, Una aproximación crítica a la propuesta de fenómenos ionosféricos como precursores sísmicos, in M. Herraiz and B. A. De La Morena (eds.), Tendencias actuales en la Investigación de la Ionosfera, Universidad Complutense, Madrid, pp. 319–335.Google Scholar
  54. Hocke, K. and Tsuda, T.: 2001, Gravity waves and ionospheric irregularities over tropical convection zone observed by GPS/MET radio occultation, Geophys. Res. Lett. 28, 2815–2818.Google Scholar
  55. Hung, R. J., Lee, C. C., Johnson, D. L., and Chen, A. J.: 1991, Remote sensing of mesospheric and thermospheric density perturbations induced by subtropical heavy rainfalls for spacecraft environment study, Acta Astronaut. 25, 379–393.Google Scholar
  56. Jacobi, Ch., Portnyagin, Yu. I., Solovjova, T. V., Hoffman, P., Singer, W., Fahrutdinova, A. N., Ishmuratov, R. A., Beard, A. G., Mitchell, N. J., Muller, H. G., Schminder, R., Kuerschner, D., Manson, A. H., and Meek, C. E.: 1999, Climatology of the semi-diurnal tide at 52° N-56° N from ground-based radar wind measurements 1985–1995, J. Atmos. Sol.-Terr. Phys. 61, 975–991.Google Scholar
  57. Jarvis, M. J., Jenkins, B., and Rodgers, G. A.: 1998, Southern hemisphere observations of long-term decrease in F-region altitude and thermospheric wind providing possible evidence for global thermospheric cooling, J. Geophys. Res. A 103, 20774–20787.Google Scholar
  58. Jarvis, M. J.: 2001, Antarctica's role in understanding long-term change in the upper atmosphere, Surv. Geophys. 22, 155–174.Google Scholar
  59. Johnson, R. M. and Killeen, T. L. (eds.): 1995, The upper mesosphere and lower thermosphere: A review of experiment and theory, Geophysical Monograph 87, AGU, USA.Google Scholar
  60. Johnston, M. J. S.: 1997, Review of electrical and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys. 18, 441–475.Google Scholar
  61. Kagan, Y. Y.: 1997, Are earthquakes predictable?, Geophys. J. Int. 131, 505–525.Google Scholar
  62. Kalashnikov, A. D.: 1954, Potentialities of magnetometric methods for the problem of earthquake forerunners, Tr. Geofiz. Inst., Akad. Nauk. SSSR 25, 180–182 (in Russian).Google Scholar
  63. Kazimirovsky, E. S., Vergasova, G. V., Khachikjan, G. Ya., and Rudina, M. P.: 1982, Meteorological effects in the variations of ionospheric parameters, J. Atmos. Terr. Phys. 44, 913–922.Google Scholar
  64. Kazimirovsky, E. S.: 1983, Thunderstorm effects on the ionospheric processes. A review, Res. Geom. Aeron. Solar Phys. Science Press, Moscow, Russia 66, 170–192 (in Russian).Google Scholar
  65. Kazimirovsky, E. S., Manson, A. H., and Meek, A. H.: 1988, Winds and waves in the middle atmosphere at Saskatoon, Collm and Badary, J. Atmos. Terr. Phys. 50, 243–250.Google Scholar
  66. Kazimirovsky, E. S. and Kokourov, V. D.: 1991, The tropospheric and stratospheric effects in the ionosphere, J. Geom. Geoelectr. 43 (Suppl. Part 1), 551–562.Google Scholar
  67. Kazimirovsky, E. S., Kokourov, V. D., and Vergasova, G. V.: 1997, The dynamical structure of the lower thermosphere during the CRISTA/MAHRSI campaign, Adv. Space Res. 19, 611–613.Google Scholar
  68. Kazimirovsky, E. S., Pirog, O. M., and Vergasova, G. V.: 1999, The upper mesosphere/lower thermosphere wind field nonzonality as possible sign of the external forcing from above and below, Adv. Space Res. 24, 649–655.Google Scholar
  69. Kazimirovsky, E.: 2000, The ionosphere: aeronomical and meteorological aspects, in M. Herraiz and B. A. De La Morena (eds.), Tendencias actuales en la Investigación de la Ionosfera, Universidad Complutense, Madrid, pp. 155–158.Google Scholar
  70. Kelley, M.: 1997, In situ ionospheric observations of severe weather-related gravity waves and associated small-scale plasma events, J. Geophys. Res. A102, 329–335.Google Scholar
  71. Kim, V. P., Hegai, V. V., and Illich-Svitych, P. V.: 1994, On one possible ionospheric precursor of earthquakes, Physics Solid Earth 30(3), 223–226.Google Scholar
  72. Kim, V. P. and Hegai, V. V.: 1997, On possible changes in midlatitude upper ionosphere before strong earthquakes, J. Earthquake Prediction Res. 6, 275–280.Google Scholar
  73. Kim, V. P. and Hegai, V. V.: 1999, A possible presage of strong earthquake in the night-time midlatitude F2 region ionosphere, in M. Hayakawa (ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terra. Sci. Publ. Comp., Tokyo, pp. 619–627.Google Scholar
  74. Krassovsky, V. I.: 1977, Internal gravity waves near the mesopause and the hydroxil emission, Ann. Geophysicae 33, 347–352.Google Scholar
  75. Larkina, V. I., Nalivaiko, A. V., Gershenzon, N. I., Gokhberg, M. B., Liperovsky, V. A., and Shalimov, S. L.: 1983, Observations of VLF radiations linked with seismic activity from Intercosmos 19, Geomag. Aeronom. 23, 842–847.Google Scholar
  76. Larkina, V. I., Migulin, V. V., Molchanov, O. A., Kharkov, I. P., Inchin, A. S., and Schvetcova, V. B.: 1989, Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones, Phys. Earth Planet. Int. 57, 100–109.Google Scholar
  77. Lastovicka, J.: 1983, Winter anomaly studies in Czechoslovakia (A Review), Bulg. Geophys. Journ. 9, 17–26.Google Scholar
  78. Lastovicka, J. and De la Morena, B. A.: 1987, The response of the lower ionosphere in Central and Southern Europe to the anomalous stratospheric conditions, Physica Scripta 35, 902–905.Google Scholar
  79. Lastovicka, J., Pancheva, D., and Zhang, X. J.: 1990, On some differences in the behaviour of the upper and lower part of the lower ionosphere in relation to meteorological parameters, Ann. Geophysicae 8, 599–608.Google Scholar
  80. Lastovicka, J., Ebel, A., and Ondraskova, A.: 1994, On the transformation of planetary waves of tropospheric origin into waves in radio wave absorption in the lower ionosphere, Studia Geoph. Geodet. 38, 71–81.Google Scholar
  81. Lastovicka, J. and Mlch, P.: 1996, Solar cycle effect on oscillations in the period range of 2–20 days in the F-region of the ionosphere, Annali di Geofisica 39, 783–790.Google Scholar
  82. Lastovicka, J.: 1997a, Observation of tides and planetary waves in the atmosphere-ionosphere system, Adv. Space Res. 20, 1209–1212.Google Scholar
  83. Lastovicka, J.: 1997b, Long-term trends in the upper middle atmosphere as detected by ionospheric measurements, Adv. Space Res. 20, 2065–2074.Google Scholar
  84. Lastovicka, J.: 1998, Can planetary wave type oscillations in the F2 region be caused by modulation of upward propagating tides and be predicted from wind measurements in the lower thermosphere?, in Proc. 2nd COST-251 Workshop, Rutherford Appleton Lab., Didcot, UK, pp. 234–238.Google Scholar
  85. Lastovicka, J.: 1999, Planetary wave modulation of upward propagating tides and gravity waves as contribution to planetary wave type oscillations in the F2 region, in Proc.4th COST-251 Workshop, Madeira, Portugal, pp. 192–197.Google Scholar
  86. Lawrence A. R. and Jarvis, M. J.: 2001, Initial comparisons of planetary waves in the stratosphere, mesosphere and ionosphere over Antarctica, Geophys. Res. Lett. 28, 203–206.Google Scholar
  87. Leonard, R. S. and Barnes, R. A.: 1965, Observation of ionospheric disturbances following the Alaska earthquake, J. Geophys. Res. 70, 11250–1253.Google Scholar
  88. Liperovskaya, Y. V., Christakis, N., Liperovsky, V. A., and Oleinik, M. A.: 1994, Seismic and anthropogenic activity in the night-time sporadic E layer of the ionosphere, Geomag. Aeron. 34, 311–314.Google Scholar
  89. Liperovsky, V. A., Pohotelov, O. A., Liperovskaya, R. Kh., and Rubstov, L. N.: 1994, Effects on the F2 region of the ionosphere during military operations in the Persian Gulf Zone, Phys. Solid Earth 30, 456–461.Google Scholar
  90. Liu, J. Y., Chen Y. I., Chuo, T. J., and Tsai, H. F.: 2001, Variations of ionospheric total electron content during the Chi-Chi earthquake, Geophys. Res. Lett. 28, 1383–1386.Google Scholar
  91. Manson, A. H., Meek, C. E., Schminder, R., Kuerschner, D., Clark, R. R., Mueller, H. G., Vincent, R. A., Phillips, A., Fraser, C. J, Singer, W., and Kazimirovsky, E. S.: 1990, Tidal winds from the MLT global radar network during the first LTCS campaign-September 1987, J. Atmos. Terr. Phys. 52, 175–187.Google Scholar
  92. Manson, A. H., Meek, C. E., Avery, S. K., Fraser, R. A., Schminder, R., Kuerschner, D., and Kazimirovsky, E. S.: 1991, Tidal winds from the mesosphere, lower thermosphere global radar network during the second LTCS campaign-December 1988, J. Geophys. Res. A96, 1117–1126.Google Scholar
  93. Manzano, J. R., Radicella, S. M., Zossi de Artigas, M. M., Filippi de Manzano, A. N., and Cosio de Ragone, A. H.: 1998, Troposphere-ionosphere interaction during tropospheric Mesoscale Convective Complexes (MMC) events, J. Atmos. Terr. Phys. 60, 585–594.Google Scholar
  94. Marin, D., Mikhailov, A. V., De la Morena, B. A., and Herraiz, M.: 2000, Tendencias a largo plazo en la region F2 de la ionosfera y su relación con la actividad magnética, in M. Herraiz and B. A. De La Morena (eds.), Tendencias actuales en la Investigación de la Ionosfera, Universidad Complutense, Madrid, pp. 223–262.Google Scholar
  95. Marin, D., Mikhailov, A. V., De la Morena, B. A., and Herraiz, M.: 2001, Long-term hmF2 trends in the Eurasian longitudinal sector from the ground-based ionosonde observations, Ann. Geophysicae 19, 761–772.Google Scholar
  96. Martyn, D. F.: 1952, Troposphere-ionosphere relationship, Geophys. Res. Papers, USA 12, 31–33.Google Scholar
  97. Meek, C. E. and Manson, A. H.: 1985, Comparison of Primrose Lake (54° N, 110° W) rocket winds (20–60 km) and Saskatoon (52° N, 107° W) MF radar winds (60–110 km), J. Atmos. Terr. Phys. 47, 477–487.Google Scholar
  98. METEOROLOGICAL GLOSSARY: 1991, HMSO, Meteorological Office, London, UK.Google Scholar
  99. Mikhailov, A. V. and Marin, D.: 2000, Geomagnetic control of the foF2 long-term trends, Ann. Geophysicae 18, 653–665.Google Scholar
  100. Mikhailov, A. V., Marin, D., Leschinskaya, T. Yu., and Herraiz, M.: 2002, A revised approach to the foF2 long-term trend analysis, Ann. Geophysicae 20, 1663–1675.Google Scholar
  101. Mikhailov, Y. M., Mikhailova G. A., and Kapustina, O. V.: 1997a, ELF and VLF electromagnetic background in the topside ionosphere over seismically active areas, Geomagn. Aeron. 37, 450–455.Google Scholar
  102. Mikhailov, Y. M., Mikhailova G. A., and Kapustina, O. V.: 1997b, Fine structure of the spectra of VLF-transmitter signals above the zone of the Iranian earthquake of 1990, Geomagn. Aeron. 37, 608–612.Google Scholar
  103. Mikhailova, G. A., Mikhailov, Yu. M., and Kapustina, O. V.: 2000, ULF-VLF electric fields in the external ionosphere over powerful typhoons in Pacific Ocean, Int. Journ. Geomag. Aeron. 2, 153–158.Google Scholar
  104. Molchanov, O. A., Kopytenko Yu. A., Voronov, P. M., Kopytenko, E. A., Matiashvili, T. G., Fraser-Smith, A. C., and Bernardy, A.: 1992, Results of UKF magnetic field measurements near the epicenters of the Spitak (Ms = 6.9) and Loma Prieta (Ms = 7.1) earthquakes: comparative analysis, Geophys. Res. Lett. 19, 1495–1498.Google Scholar
  105. Molchanov, O. A., Hayakawa, M., Ondo, T., and Kawai, E.: 1998, Precursory effects in the subionospheric VLF signals for the Kobe earthquake, Phys. Earth Planet. Int. 105, 239–248.Google Scholar
  106. Muller-Wodarg, I. C. F., Millward, C. H., and Alyward, A. D.: 2000, On the propagation of planetary wave signatures into thermosphere and ionosphere, IAGA Workshop, Lower Atmosphere Effects on the Ionosphere and Upper Atmosphere, Prague, 2000.Google Scholar
  107. Naujokat, B. and Labitzke, K.: 1993, Collection of reports on the stratospheric circulation during the winters 1974/1975–1991/1992, SCOSTEP Secretariat, University of Illinois, USA.Google Scholar
  108. Nygren, T., Turunen, T., and Rishbeth, H: 1990, Interference of tidal and gravity waves in the ionosphere and an associated sporadic E-layer, J. Atmos. Terr. Phys. 52, 609–624.Google Scholar
  109. Ondoh, T.: 2000, Seismo-ionospheric phenomena, Adv. Space Res. 26, 1267–1272.Google Scholar
  110. Offerman, D., Brukelman, H., Barnett, J., Labitzke, K., Torkar, K., and Widdel, H.: 1982, A scale analysis of the D-region winter anomaly, J. Geophys. Res. 87, 8286–8306.Google Scholar
  111. Pancheva, D., Apostolov, E., Lastovicka, J., and Boska, J.: 1989, Long-period fluctuations observed in the ionospheric absorption variations, J. Atmos. Terr. Phys. 51, 381–388.Google Scholar
  112. Pancheva, D., Lastovicka, J., and De la Morena, B. A.: 1991, Quasi-periodic fluctuations of ionospheric absorption in relation to planetary activity in the stratosphere, J. Atmos. Terr. Phys. 53, 1151–1155.Google Scholar
  113. Park, S. K., Johnston, M. J. S., Madden, T. R., Morgan, F. D. and Morrison, H. F.: 1993, Electromagnetic precursors to earthquakes in the ULF band: a review of observations and mechanisms, Rev. Geophys. 31, 117–132.Google Scholar
  114. Parrot, M., Achache, J., Berthelier, J. J., Blanc, E., Deschamps, A., Lefeuvre, F., Menvielle, M., Plantet, J. L., Tarits P., and Villain, J. P.: 1993, High frequency seismo-electromagnetic effects, Phys. Earth Planet. Int. 77, 65–83.Google Scholar
  115. Pasko, V. P., Inan, U. S., Bell, T. F., and Taranenko, Y. N.: 1997, Sprites produced by quasielectrostatic heating and ionization in the lower ionosphere, J. Geophys. Res. A102, 4529–4561.Google Scholar
  116. Pham, V. N., Boyer, D., Le Mouël, J. L., Chouliaras, G., and Stavrakakis, G. N.: 1999, Electromagnetic signals generated in the solid earth by digital transmission of radio waves as a plausible source for some so-called “seismic electric signals”, Phys. Earth Planet. Int. 114, 141–163.Google Scholar
  117. Pietrella, M., Kazimirovsky, E. S., De Franceschi, G., Grigioni, P. and Scotto, C.: 2001, Could we find any signal of the stratosphere-ionosphere coupling in Antarctic?, (submitted to Annnali di Geofisica).Google Scholar
  118. Portnyagin, Yu. I., Makarov, N. A., Chebotarev, R. P., Nikonov, A. N., Kazimirovsky, E. S., Kokourov, V. D., Sidorov, V. V., Fahrutdinova, A. N., Cevolani, G., Clark, R. R., Kuerschner, D., Schminder, R., Manson, A. H., Meek, C. E., Muller, H. G., Stoddard, J. C., Singer, W., and Hoffmann, P.: 1994, The wind regime of the mesosphere and lower thermosphere during the DYANA campaign-II. Semidiurnal tide, J. Atmos. Terr. Phys. 56, 1731–1740.Google Scholar
  119. Pulinets, S. A.: 1998a, Strong earthquake prediction possibility with the help of topside from satellites, Adv. Space Res. 21, 455–458.Google Scholar
  120. Pulinets, S. A.: 1998b, Seismic activity as a source of the ionospheric variability, Adv. Space Res. 22, 903–906.Google Scholar
  121. Pulinets, S. A. and Kim, V. P.: 1998, Unusual longitude modification of the night-time midlatitude F2 region ionosphere in July 1980 over the array of tectonic faults in the Andes area: observations and interpretations, Geophys. Res. Lett. 25, 4133–4136.Google Scholar
  122. Rice, C. J. and Sharp, L. R.: 1977, Neutral atmospheric waves in the thermosphere and troposphere weather systems, Geophys. Res. Lett. 4, 315–317.Google Scholar
  123. Rishbeth, H.: 1997, Long-term changes in the ionosphere, Adv. Space Res. 20, 2149–2156.Google Scholar
  124. Rishbeth, H. and Roble, R. G.: 1992, Cooling of the upper atmosphere by enhanced greenhouse gases-Modelling of thermospheric and ionospheric effects, Planet. Space Sci. 40, 1011–1026.Google Scholar
  125. Rodger, C. J.: 1999, Red sprites, upward lightning, and VLF perturbations, Rev Geophys. 37, 317–336.Google Scholar
  126. Rodger, C. J., Thomson, N. R., and Dowden, R. L.: 1996, A search of ELF/VLF activity associated with earthquakes using ISS satellite data, J. Geophys. Res. 101, 13,369–13,378.Google Scholar
  127. Rodger, C. J., Clilverd, M. A., and Thomson, N. R.: 1999, Modeling of subionospheric VLF signal perturbations associated with earthquakes, Radio Science 34, 1177–1185.Google Scholar
  128. Row, R. V.: 1966, Evidence of long-period acoustic-gravity waves launched into the F region by the Alaskan earthquake of March 26, 1964, J. Geophys. Res. 71, 343–345.Google Scholar
  129. Rycroft, M. J.: 1994, Some effects in the middle atmosphere due to lightning, J. Atmos. Terr. Phys. 56, 343–348.Google Scholar
  130. Sauli, P. and Boska, J.: 2001, Tropospheric events and possible related gravity wave activity effects on the ionosphere, J. Atmos. Sol.-Terr. Phys. 63, 945–950.Google Scholar
  131. Schwentek, H.: 1976, Manual on Ionospheric AbsorptionMeasurements, World Data Center A, USA, Chapter 6.Google Scholar
  132. Schoedel, J. P., Klostermeyer, J., Roettger, J., and Stilke, G.: 1973, Evidence for troposphericionospheric coupling by atmospheric gravity waves, Z. Geophys. 39, 1063–1066.Google Scholar
  133. Sentman, D. D. and Wescott, E. M.: 1995, Red sprites and blue jets: Thunderstorm excited optical emissions in the stratosphere, mesosphere, and ionosphere, Phys. Plasmas 2, 2415–2419.Google Scholar
  134. Shapley, A. H. and Beynon, W. J. G.: 1965, Winter anomaly in the ionospheric absorption and stratospheric warmings, Nature 206, 1242–1243.Google Scholar
  135. Singer, W., Hoffman, P., Manson, A. H., Meek, C. E., Schminder, R., Kuerschner, D., Kokin, G. A., Knyazev, A. K., Potnyagin, Yu. I., Makarov, N. A., Fahrutdinova, A. N., Sidorov, V. V., Cevolani, G., Muller, H. G., Kazimirovsky, E. S., Gaidukov, V. A., Clark, R. R., Chebotarev, R. P., and Karadjaev, Y.: 1994, The wind regime of the mesosphere and lower thermosphere during DYANA campaign-I. Prevailing wind, J. Atmos. Terr. Phys. 56, 1717–1730.Google Scholar
  136. Solar-Terrestrial Energy Program (STEP) 1990–1997: 1990, SCOSTEP Secretariat, University of Illinois, Urbana, USA.Google Scholar
  137. Solomon, S. C.: 2000, Modelling of the thermosphere/ionosphere system, Phys. Chem. Earth (C) 25, 499–503.Google Scholar
  138. Sorokin, V. M. and Chmyrev, V. M.: 1999a, Modification of the ionosphere by seismic related electric field, in M. Hayakawa (ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terra. Sci. Publ. Comp., Tokyo, pp. 805–818.Google Scholar
  139. Sorokin, V. M. and Chmyrev, V. M.: 1999b, The physical model of electromagnetism and plasma response of the ionosphere on the pre-earthquake processes, in M. Hayakawa (ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terra. Sci. Publ. Comp., Tokyo, pp. 819–828.Google Scholar
  140. Sprenger, K. and Schminder, R.: 1967, On the significance of ionospheric drift measurements in the LF-range, J. Atmos. Terr. Phys. 29, 183–199.Google Scholar
  141. Suess, S. T. and Tsurutani, B. T. (eds.): 1998, From the Sun: Auroras, Magnetic Storms, Solar Flares, Cosmic Rays (monograph), American Geophysical Union, Washington, D.C.,USA.Google Scholar
  142. Taubenheim, J.: 1983, Meteorological control of the D-region, Space Sci. Res. 34, 397–411.Google Scholar
  143. Thomas, G. E.: 1996, Global change in the mesosphere-lower thermosphere region: has it already arrived?, J. Atmos. Terr. Phys. 58, 1629–1656.Google Scholar
  144. Ulich, T. and Turunen, E.: 1997, Evidence for long-term cooling of the upper atmosphere in ionosonde data, Geophys. Res. Lett. 24, 1103–1107.Google Scholar
  145. Varotsos, P. and Alexopoulos, K.: 1984a, Physical properties of the variations of the electric field of the Earth preceding earthquakes I, Tectonophysics 110, 73–98.Google Scholar
  146. Varotsos, P. and Alexopoulos, K.: 1984b, Physical properties of the variations of the electric field of the Earth preceding earthquakes II. Determination of epicenter and magnitude, Tectonophysics 110, 99–125.Google Scholar
  147. Varotsos, P. and Alexopoulos, K.: 1987, Physical properties of the variations of the electric field of the Earth preceding earthquakes III. Determination of epicenter and magnitude, Tectonophysics 136, 335–339.Google Scholar
  148. Varotsos, P.: 2001, A review and analysis of electromagnetic precursory phenomena, Acta Geophysica Polonica XLIX, 1–42.Google Scholar
  149. Vincent, R. A.: 1990, Planetary and gravity waves in the mesosphere and lower thermosphere, Adv. Space Res. 10, 93–101.Google Scholar
  150. Waldock, J. A. and Jones, J. B.: 1987, Source regions of medium travelling ionospheric disturbances observed at mid-latitudes, J. Atmos. Terr. Phys. 49, 105–114.Google Scholar
  151. Wan, W., Yuan, H., Ning, B., Liang, J., and Ding, F.: 1999, Travelling ionospheric disturbances associated with tropospheric vortexes around Qinghai-Tibet Plateau, Geophys. Res. Lett. 26, 3775–3778.Google Scholar
  152. Whitten, R. C. and Poppoff, I. G.: 1971, Fundamentals of Aeronomy (monograph), John Wiley, New York, USA.Google Scholar
  153. Wickwar, V. B. and Carlson, H. C.: 1999, Ionospheric and thermospheric couplings: vertical, latitudinal and longitudinal, J. Atmos. Sol.-Terr. Phys. 61, 141–152.Google Scholar
  154. Wilson, E.: 1922, On the susceptibility of feebly magnetic bodies as affected by compression, Proc. Roy. Soc. London. A. 101, 445–452.Google Scholar
  155. Wyss, M.: 1997, Second round of evaluations of proposed earthquake precursors, Pure Appl. Geophys. 149, 3–16.Google Scholar
  156. Yoshino, T., Tomizawa, I., and Shibata, T.: 1985, The possibility of using a direction finding technique to locate earthquake epicenters from electromagnetic precursor radiation, Ann. Geophysicae 3, 727–730.Google Scholar
  157. Yoshino, T.: 1997, Case 26: Increasing VLF background noise level, Pure Appl. Geophys. 149, 147–157.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • E. Kazimirovsky
    • 1
  • M. Herraiz
    • 2
  • B. A. De La Morena
    • 3
  1. 1.Institute of Solar-Terrestrial PhysicsIrkustkRussia
  2. 2.Department of Geophysics and Meteorology, Faculty of PhysicsUniversity Complutense of MadridMadridSpain
  3. 3.Atmospheric Sounding Station “El Arenosillo”INTAMazagon, HuelvaSpain

Personalised recommendations