Statistics and Computing

, Volume 13, Issue 2, pp 127–136 | Cite as

Flexible spatio-temporal stationary variogram models

  • Rubén Fernández-Casal
  • Wenceslao González-Manteiga
  • Manuel Febrero-Bande


In this paper we propose a generalization of the Shapiro and Botha (1991) approach that allows one to obtain flexible spatio-temporal stationary variogram models. It is shown that if the weighted least squares criterion is chosen, the fitting of such models to pilot estimations of the variogram can be easily carried out by solving a quadratic programming problem. The work also includes an application to real data and a simulation study in order to illustrate the performance of the proposed space-time dependency modeling.

geostatistics anisotropy spectral representation ordinary kriging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz M. and Stegun I.A. 1965. Handbook of Mathematical Functions. Dover, New York.Google Scholar
  2. Bochner S. 1959. Lectures on Fourier Integrals. Princeton University Press, New Jersey.Google Scholar
  3. Cressie N. 1985. Fitting variogram models by weighted least squares. Mathematical Geology 17: 563–586.Google Scholar
  4. Cressie N. 1993. Statistics for Spatial Data (rev. ed.). Wiley, New York.Google Scholar
  5. Cressie N. and Huang H.-L. 1999. Classes of non-separable, spatiotemporal stationary covariance functions. JASA 94: 1330–1340.Google Scholar
  6. Dubrule O. 1983. Cross validation of kriging in a unique neighborhood. Mathematical Geology 15: 687–699.Google Scholar
  7. Guttorp P., Sampson P.D., and Newman K. 1992. Non-parametric estimation of spatial covariance with application to monitoring network evaluation. Statistics in the Environmental and Earth Sciences. Edward Arnold, London, pp. 39–51.Google Scholar
  8. Haas T.C. 1995. Local prediction of a spatio-temporal process with an application to wet sulphate deposition. JASA 90: 1189–1199.Google Scholar
  9. Jones R.H. and Zhang Y. 1997. Models for continuous stationary space-time processes. Modeling Longitudinal and Spatially Correlated Data. Lecture Notes in Statistics 122. Springer, New York, pp. 289–298.Google Scholar
  10. Journel A.G. 1986. Geostatistics: Models and tools for the earth sciences. Mathematical Geology 18: 119–140.Google Scholar
  11. Journel A.G. and Huijbregts C.J. 1978. Mining Geostatistics. Academic Press, London.Google Scholar
  12. Kyriakidis P. and Journel A. 1999. Geostatistical space-time models: A review. Mathematical Geology 31: 651–684.Google Scholar
  13. Shapiro A. and Botha J.D. 1991. Variogram fitting with a general class of conditionally non-negative definite functions. Computational Statistics and Data Analysis 11: 87–96.Google Scholar
  14. Stein M. 1999. Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Rubén Fernández-Casal
    • 1
  • Wenceslao González-Manteiga
    • 1
  • Manuel Febrero-Bande
    • 1
  1. 1.Department of Statistics and Operational ResearchUniversity of Vigo, Facultade de Ciencias Empresariais, Campus de OurenseOurenseSpain

Personalised recommendations