Neurochemical Research

, Volume 28, Issue 7, pp 1017–1027 | Cite as

Amyloid-Beta Immunization in Alzheimer's Disease Transgenic Mouse Models and Wildtype Mice

  • Cynthia A. Lemere
  • Edward T. Spooner
  • Jodi F. Leverone
  • Chica Mori
  • Melitza Iglesias
  • Jeanne K. Bloom
  • Timothy J. Seabrook
Article

Abstract

Alzheimer's disease is the most prevalent form of dementia worldwide. Therapies are desperately needed to prevent and cure the disease. Mouse models of amyloid-β deposition [APP and PSAPP transgenic (tg) mice] have been useful in determining the role of amyloid-β (Aβ) in both the pathogenesis and cognitive changes in AD. In addition, they have allowed scientists to investigate potential AD therapies in living animals. Active and passive Aβ immunizations have been employed successfully in APP and PSAPP tg mice to lower cerebral Aβ levels and improve cognition. Optimization of immunization protocols and characterization of immune responses in wildtype mice have been reported. Based on the promising results of Aβ immunization studies in mice, a clinical trial was initiated for Aβ vaccination in humans with AD. Although no adverse effects were reported in the Phase I safety trials, about 5% of AD patients in the phase II clinical trial developed meningoencephalitis, ending the trial prematurely in March 2002. Studies in AD mouse models and wildtype mice may help elucidate the mechanism for these unwanted side effects and will be useful for testing newer, safer vaccines for future use in human clinical trials.

Aβ vaccine APP PSAPP transgenic antibodies adjuvants intranasal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Selkoe, D. J. 1999. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399:A23-A31.PubMedGoogle Scholar
  2. 2.
    Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., Penniman, E., Power, M., Schenk, D., Seubert, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J. 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527.PubMedGoogle Scholar
  3. 3.
    Hsiao, K., Chapman, P., Nilsen, S., Ekman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. 1996. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102.PubMedGoogle Scholar
  4. 4.
    Mucke, L., Masliah, E., Yu, G.Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., and McConlogue, L. 2000. High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20:4050–4058.PubMedGoogle Scholar
  5. 5.
    Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., Chishti, M. A., Horne, P., Heslin, D., French, J., Mount, H. T., Nixon, R. A., Mercken, M., Bergeron, C., Fraser, P. E., St George-Hyslop, P., and Westaway, D. 2000. A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408:979–982.PubMedGoogle Scholar
  6. 6.
    Borchelt, D. R., Ratovitski, T., van Lare, J., Lee, M. K., Gonzales, V., Jenkins, N. A., Copeland, N. G., Price, D. L., and Sisodia, S. S. 1997. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19:939–945.PubMedGoogle Scholar
  7. 7.
    Holcomb, L., Gordon, M. N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., Wright, K., Saad, I., Mueller, R., Morgan, D., Sanders, S., Zehr, C., O'Campo, K., Hardy, J., Prada, C. M., Eckman, C., Younkin, S., Hsiao, K., and Duff, K. 1998. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4:97–100.PubMedGoogle Scholar
  8. 8.
    Takeuchi, A., Irazarry, M. C., Duff, K., Saido, T. C., Hsaio-Ashe, K., Hasagawa, M., Mann, D., Hyman, B. T., and Iwatsubo, T. 2000. Age-related amyloid β deposition in transgenic mice over-expressing both Alzheimer mutant presenilin 1 and amyloid 3 precursor protein Swedish mutant is not associated with global neuronal loss. Am. J. Pathol. 157:331–339.PubMedGoogle Scholar
  9. 9.
    Chen, G., Chen, K. S., Knox, J., Inglis, J., Bernard, A., Martin, S. J., Justice, A., McConlogue, L., Games, D., Freedman, S. B., and Morris, R. G. 2000. A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer's disease. Nature 408:975–979.PubMedGoogle Scholar
  10. 10.
    Gordon, M. N., King, D. L., Diamond, D. M., Jantzen, P. T., Boyett, K. L., Hope, C. E., Hatcher, J. M., DiCarlo, F., Gottschall, P., Morgan, D., and Arendash, G. W. 2001. Correlation between working memory deficits and Aβ deposits in transgenic APP+PS1 mice. Neurobiol. Aging 22:377–385.PubMedGoogle Scholar
  11. 11.
    Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vendevert, C., Walker, S., Wogulis, M., Yednock, T., Games, D., and Seubert, P. 1999. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177.PubMedGoogle Scholar
  12. 12.
    Bard, F., Cannon, C., Barbour, R., Burke, R. L., Games, D., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Lieberburg, I., Motter, R., Nguyen, M., Soriano, F., Vasquez, N., Weiss, K., Welch, B., Seubert, P., Schenk, D., and Yednock, T. 2000. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6:916–919.PubMedGoogle Scholar
  13. 13.
    Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C., Hardy, J., Duff, K., Jantzen, P., DiCarlo, G., Wilcock, D., Connor, K., Hatcher, J., Hope, C., Gordon, M., and Arendash, G. W. 2000. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408:982–985.Google Scholar
  14. 14.
    Arendash, G. W., Gordon, M. N., Diamond, D. M., Austin, L. A., Hatcher, J. M., Jantzen, P., DiCarlo, G., Wilcock, D., and Morgan, D. 2001. Behavioral assessment of Alzheimer's transgenic mice following long-term Aβ vaccination: task specificity and correlations between Aβ deposition and spatial memory. DNA Cell Biol. 20:737–744.PubMedGoogle Scholar
  15. 15.
    Weiner, H. L., Lemere, C. A., Maron, R., Spooner, E. T., Grenfell, T. J., Mori, C., Issazadeh, S., Hancock, W. W., and Selkoe, D. J. 2000. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. Ann. Neurol. 48:567–579.PubMedGoogle Scholar
  16. 16.
    Lemere, C. A., Maron, R., Spooner, E. T., Grenfell, T. J., Mori, C., Desai, R., Hancock, W. W., Weiner, H. L., and Selkoe, D. J. 2000. Nasal Aβ treatment induces anti-Aβ antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann. N. Y. Acad. Sci. 920:328–331.PubMedGoogle Scholar
  17. 17.
    Lemere, C. A., Spooner, E. T., LaFrancois, J. F., Malester, B., Mori, C., Leverone, J. F., Matsuoka, Y., DeMattos, R. B., Holtzman, D. M., Clements, J. D., Selkoe, D. J., and Duff, K. E. 2002. Evidence for peripheral clearance of Aβ following chronic, active Aβ immunization in PSAPP mice. Neurobiol. Dis. (in press).Google Scholar
  18. 18.
    Vehmas, A. K., Borchelt, D. R., Price, D. L., McCarthy, D., Wills-Karp, M., Peper, M. J., Rudow, G., Luyinbazi, J., Siew, L. T., and Troncoso, J. C. 2001. β-amyloid peptide vaccination results in marked changes in serum and brain Aβ levels in APP-swe/PS1δE9 mice, as detected by SELDI-TOF-based Protein Chip technology. DNA Cell Biol. 20:713–721.PubMedGoogle Scholar
  19. 19.
    Sigurdsson, E. M., Scholtzova, H., Mehta, P. D., Frangione, B., and Wisniewski, T. 2001. Immunization with a non-toxic/non-fibrillar amyloid-β homologous peptide reduces Alzheimer's disease-associated pathology in transgenic mice. Am. J. Pathol. 159:439–447.PubMedGoogle Scholar
  20. 20.
    Das, P., Murphy, M. P., Younkin, L. H., Younkin, S. G., and Golde, T. E. 2001. Reduced effectiveness of Aβ1–42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol. Aging. 22:721–727.PubMedGoogle Scholar
  21. 21.
    Dodart, J.C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., DeLong, C. A., Wu, S., Wu, X., Holtzman, D. M., and Paul, S. M. 2002. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat. Neurosci. 5:452–457.PubMedGoogle Scholar
  22. 22.
    Kotilinek, L. A., Bacskai, B., Westerman, M., Kawarabayashi, T., Younkin, L., Hyman, B. T., Younkin, S., and Ashe, K. H. 2002. Reversible memory loss in a transgenic model of Alzheimer's disease. J. Neurosci. 22:6331–6335.PubMedGoogle Scholar
  23. 23.
    Solomon, B., Koppel, R., Hanan, E., and Katzav, T. 1996. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl. Acad. Sci. U.S.A. 93:452–455.PubMedGoogle Scholar
  24. 24.
    Solomon, B., Koppel, R., Frenkel, D., and Hanan-Aharon, E. 1997. Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. U.S.A. 94:4109–4112.PubMedGoogle Scholar
  25. 25.
    Wilcock, D. M., Gordon, M. N., Ugen, K. E., Gottschall, P. E., DiCarlo, G., Dickey, C., Boyett, K. W., Jantzen, P. T., Connor, K. E., Melachrino, J., Hardy, H., and Morgan, D. 2001. Number of Aβ inoculations in APP+PS1 transgenic mice influences antibody titers, microglial activation and congophilic plaque levels. DNA Cell Biol. 20:731–736.PubMedGoogle Scholar
  26. 26.
    Bacskai, B. J., Kajdasz, S. T., Christie, R. H., Carter, C., Games, D., Seubert, P., Schenk, D., and Hyman, B. T. 2001. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat. Med. 7:369–372.PubMedGoogle Scholar
  27. 27.
    Bacskai, B., Kajdasz, S. T., McLellan, M. E., Games, D., Seubert, P., Schenk, D., and Hyman, B. T. 2002. Non-Fc-mediated mechanisms are involved in clearance of amyloid-β in vivo by immunotherapy. J. Neurosci. 22:7873–7878.PubMedGoogle Scholar
  28. 28.
    DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J.C., Paul, S. M., and Holtzman, D. M. 2001. Peripheral anti-Aβ antibody alters CND and plasma clearance and decreases brain A3 burden in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 98:8850–8855.PubMedGoogle Scholar
  29. 29.
    Spooner, E. T., Desai, R., Mori, C., Leverone, J. F., and Lemere, C. A. 2002. The generation and characterization of potentially therapeutic Aβ antibodies in mice: differences according to strain and immunization protocol. Vaccine 21:290–297.PubMedGoogle Scholar
  30. 30.
    Kuper, C. F., Koornstra, P. H., Hameleers, D. M., Biewenga, J., Spit, B. J., Duijvestijn, A. M., van Breda Vriesman, P. J., and Sminia, T. 1992. The role of nasopharyngeal lymphoid tissues. Immunol. Today. 13:219–224.PubMedGoogle Scholar
  31. 31.
    Dickinson, B. L. and Clements, J. D. 1995. Dissociation of Es-cherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect. Immunol. 63:1617–1623.Google Scholar
  32. 32.
    Del Giudice, G., Pizza, M., and Rappuoli, R. 1999. Mucosal delivery of vaccines. Methods 19:148–155.PubMedGoogle Scholar
  33. 33.
    Cheng, E., Cardenas-Freytag, L., and Clements, J. D. 1999. The role of cAMP in mucosal adjuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine 18:38–49.PubMedGoogle Scholar
  34. 34.
    Douce, G., Turcotte, C., Cropley, I., Roberts, M., Pizza, M., Domenghini, M., Rappuoli, R., and Dougan, G. 1995. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc. Natl. Acad. Sci. U.S.A. 92:1644–1648.PubMedGoogle Scholar
  35. 35.
    Barackman, J. D., Ott, G., and O'Hagan, T. 1999. Intranasal immunization of mice with influenza vaccine in combination with the adjuvant LT-R72 induces potent mucosal and serum immunity which is stronger than that with traditional intramuscular immunization. Infect. Immunol. 67:4276–4279.Google Scholar
  36. 36.
    O'Neal, C. M., Clements, J. D., Estes, M. K., and Conner, M. E. 1998. Rotavirus 2/6 viruslike particles administered intranasally with cholera toxin, Escherichia coli heat-labile toxin (LT), and LT-R192G induce protection from rotavirus challenge. J. Virol. 72:3390–3393.PubMedGoogle Scholar
  37. 37.
    Cardenas-Freytag, L., Cheng, E., Mayeux, P., Domer, J. E., and Clements, J. D. 1999. Effectiveness of a vaccine composed of heat-killed Candida albicans and a novel mucosal adjuvant, LT(R192G), against systemic candidiasis. Infect. Immunol. 67:826–833.Google Scholar
  38. 38.
    Morris, C. B., Cheng, E., Thanawastien, A., and Clements, J. D. 2000. Effectiveness of intranasal immunization with HIV-gp160 Env CTL epitope peptide (E7) in combination with the mucosal adjuvant LT (R192G). Vaccine 18:1944–1951.PubMedGoogle Scholar
  39. 39.
    Gluck, U., Gebbers, J.O., and Gluck, R. 1999. Phase 1 evaluation of intranasal virosomal influenza vaccine with and without Escherichia coli heat-labile toxin in adult volunteers. J. Virol. 73:7780–7786.PubMedGoogle Scholar
  40. 40.
    Lemere, C. A., Spooner, E. T., Leverone, J. F., Mori, C., and Clements, J. D. 2002. Intranasal immunotherapy for the treatment of Alzheimer's disease: Escherichia coli LT and LT(R192G) as mucosal adjuvants. Neurobiol. Aging 23:991–1000.PubMedGoogle Scholar
  41. 41.
    Town, T., Tan, J., Sansone, N., Obregon, D., Klein, T., and Mullan, M. 2001. Characterization of murine immunoglobulin G antibodies against human amyloid-β1–42. Neurosci. Lett. 307:101–104.PubMedGoogle Scholar
  42. 42.
    Das, P., Minidis, N., and Golde, T. 2002. Effectiveness of Aβ1–42 immunization in the Tg2576 mouse model using DNA vaccination. Neurobiol. Aging. Abstr. 411:S109.Google Scholar
  43. 43.
    Dickey, C. A., Morgan, D. G., Kudchodkar, S., Weiner, D. B., Bai, Y., Cao, C., Gordon, M. N., and Ugen, K. E. 2001. Duration and specificity of humoral immune responses in mice vaccinated with the Alzheimer's disease-associated β-amyloid 1–42 peptide. DNA Cell Biol. 20:723–729.PubMedGoogle Scholar
  44. 44.
    Leverone, J. F., Spooner, E. T., Lehmann, H., Clements, J. D., and Lemere, C. A. 2002. Aβ1–15 is less immunogenic than Aβ1–40/42 for intranasal immunization of wild-type mice but may be effective for boosting. Vaccine. (in press online 23, Dec., 2002).Google Scholar
  45. 45.
    Schenk, D. 2002. Amyloid-β Immunotherapy for Alzheimer's disease: the end of the beginning. Nature 3:824–828.Google Scholar
  46. 46.
    Grubeck-Loebenstein, B., Blasko, I., Marx, F., and Trieb, K. 2000. Immunization with β-amyloid: could T-cell activation have a harmful effect? Trends Neurosci. 23:114.Google Scholar
  47. 47.
    Marx, F., Blasko, I., Pavelka, M., and Grubeck-Loebenstein, B. 1998. The possible role of the immune system in Alzheimer's disease. Exp. Gerontol. 33:871–881.PubMedGoogle Scholar
  48. 48.
    Marx, F., Blasko, I., Zisterer, K., and Grubeck-Loebenstein, B. 1999. Transfected human B cells: a new model to study the functional and immunostimulatory consequences of APP production. Exp. Gerontol. 34:783–795.PubMedGoogle Scholar
  49. 49.
    Newman, M. J., Wu, J.Y., Gardner, B. H., Anderson, C. A., Kensil, C. R., Recchia, J., Coughlin, R. T., and Powell, M. F. 1997. Induction of cross-reactive cytotoxic T-lymphocyte responses specific for HIV-1 gp120 using saponin adjuvant (QS-21) supplemented subunit vaccine formulations. Vaccine 15:1001–1007.PubMedGoogle Scholar
  50. 50.
    Kensil, C. R., Wu, J. Y., Anderson, C. A., Wheeler, D. A., and Amsden, J. 1998. QS-21 and QS-7: purified saponin adjuvants. Dev. Biol. Stand. 92:41–47.PubMedGoogle Scholar
  51. 51.
    Alexander, J., del Guercio, M. F., Maewal, A., Qiao, L., Fikes, J., Chestnut, R. W., Paulson, J., Bundle, D. R., DeFrees, S., and Sette, A. 2002. Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses. J. Immunol. 164:1625–1633.Google Scholar
  52. 52.
    Bradney, C. P., Sempowski, G. D., Liao, H.X., Haynes, B. F., and Staats, H. F. 2002. Cytokines as adjuvants for the induction of anti-human immunodeficiency virus peptide immunoglobulin G (IgG) and IgA antibodies in serum and mucosal secretions after nasal immunizations. J. Virol. 76:517–524.PubMedGoogle Scholar
  53. 53.
    Proietti, E., Bracci, L., Puzelli, S., Di Pucchio, T., Sestili, P., De Vincenzi, E., Venditti, M., Capone, I., Seif, I., De Maeyer, E., Tough, D., Donatelli, I., and Belardelli, F. 2002. Type I IFN as a natural adjuvant for a protective immune response: lessons from the influenza vaccine models. J. Immunol. 169:375–383.PubMedGoogle Scholar
  54. 54.
    Marinaro, M., Boyaka, P. N., Jackson, R. J., Finkelman, F. D., Kiyono, H., Jirillo, E., and McGhee, J. R. 1999. Use of intranasal IL-12 to target predominantly Th1 responses to nasal and Th2 responses to oral vaccines given with cholera toxin. J. Immunol. 162:114–121.PubMedGoogle Scholar
  55. 55.
    Kim, S. K., Ragupathi, G., Musselli, C., Choi, S. J., Park, Y. S., and Livingston, P. O. 1999. Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1-KLH and GD3-KLH conjugate cancer vaccines. Vaccine 12:597–603.Google Scholar
  56. 56.
    Monsonego, A., Zota, V., Selkoe, D., and Weiner, H. 2002. Immunogenic aspects of amyloid-β peptide: Implications for pathogenesis and treatment of Alzheimer's disease. Neurobiol. Aging. Abstr. 503:S133.Google Scholar
  57. 57.
    Frenkel, D., Katz, O., and Solomon, B. 2000. Immunization against Alzheimer's β-amyloid plaques via EFRH phage administration. Proc. Natl. Acad. Sci. U. S. A. 97:11455–11459.PubMedGoogle Scholar
  58. 58.
    Frenkel, D., Kariv, N., and Solomon, B. 2001. Generation of auto-antibodies towards Alzheimer's disease vaccination. Vaccine 19:2615–2619.PubMedGoogle Scholar
  59. 59.
    Poduslo, J. F. and Curran, G. L. 2001. Amyloid β peptide as a vaccine for Alzheimer's disease involves receptor-mediated transport at the blood-brain barrier. Neuroreport. 12:3197–3200.PubMedGoogle Scholar
  60. 60.
    Munch, G. and Robinson, S. R. 2002. Potential neurotoxic inflammatory responses to Abeta vaccination in humans. J. Neural Transm. 109:1081–1087.PubMedGoogle Scholar
  61. 61.
    Lemere, C. A., Seabrook, T. J., Iglesias, M., Mori, C., Leverone, J. F., and Spooner, E. T. 2002. Modulating amyloid-beta levels by immunotherapy: A potential therapeutic strategy for the prevention and treatment of Alzheimer's disease. In Saido, T. C. (ed), Amyloid-beta Metabolism and Alzheimer's Disease. Landes Bioscience, Georgetown, TX pp. 145–161.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Cynthia A. Lemere
    • 1
  • Edward T. Spooner
    • 1
  • Jodi F. Leverone
    • 1
  • Chica Mori
    • 1
  • Melitza Iglesias
    • 1
  • Jeanne K. Bloom
    • 1
  • Timothy J. Seabrook
    • 1
  1. 1.Department of NeurologyCenter for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical SchoolBoston

Personalised recommendations