Oxidation of Metals

, Volume 59, Issue 3–4, pp 303–320 | Cite as

High-Temperature Oxidation Behavior of Ti2AlC in Air

  • X.H. Wang
  • Y.C. Zhou
Article

Abstract

The isothermal oxidation behavior of bulk Ti2AlC in air has been investigated in temperature range 1000–1300°C for exposure time up to 20 hr by TGA, XRD, and SEM/EDS. The results demonstrated that Ti2AlC had excellent oxidation resistance. The oxidation of Ti2AlC obeyed a cubic law with cubic rate constants, kc, increasing from 2.38×10-12 to 2.13×10-10 kg3/m6/sec as the temperature increased from 1000 to 1300°C. As revealed by X-ray diffraction (XRD) and SEM/EDS results, scales consisting of a continuous inner α-Al2O3 layer and a discontinuous outer TiO2 (rutile) layer formed on the Ti2AlC substrate. A possible mechanism for the selective oxidation of Al to form protective alumina is proposed in comparison with the oxidation of Ti–Al alloys. In addition, the scales had good adhesion to the Ti2AlC substrate during thermal cycling.

Ti2AlC high-temperature oxudation Al2O3 layer cubic oxidation law 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. Jeitschko, H. Nowotny, and F. Benesovky, Monotsh. Chem. 94, 672(1963).Google Scholar
  2. 2.
    M. A. Pietzka and J. C. Schuster, J. Phase Equilibr. 15, 392(1994).Google Scholar
  3. 3.
    M. W. Barsoum, M. Ali, and T. El-Raghy, Metall. Mater. Trans. A31, 1857(2000).Google Scholar
  4. 4.
    M. W. Barsoum, D. Brodkin, and T. El-Raghy, Scripta Mater. 36, 535(1997).Google Scholar
  5. 5.
    X. H. Wang and Y. C. Zhou, Z. Metallkd. 93, 66(2002).Google Scholar
  6. 6.
    X. H. Wang and Y. C. Zhou, J. Mater. Chem. 12, 455(2002).Google Scholar
  7. 7.
    Y. C. Zhou and X. H. Wang, Mater. Res. Innoûat. 5, 87(2001).Google Scholar
  8. 8.
    G. H. Meier, D. Appalonia, R. A. Perkins, and K. T. Chiang, in Oxidation of High-Temperature Intermetallics, T. Grobstein, and J. Doychak, eds. (TMS, Cleveland, OH, 1988), p. 379.Google Scholar
  9. 9.
    R. G. Reddy, X. Wen, and M. Divakar, Metall. Mater. Trans. A32, 2357(2001).Google Scholar
  10. 10.
    W. J. Quadakkers, Werkst. Korros. 41, 659(1990).Google Scholar
  11. 11.
    X. H. Wang and Y. C. Zhou, Corros. Sci., 45, 891(2003).Google Scholar
  12. 12.
    M. W. Barsoum, T. El-Raghy, and L. U. J. Ogbuji, J. Electrochem. Soc. 144, 2508(1997).Google Scholar
  13. 13.
    Z. M. Sun, Y. C. Zhou, and M. S. Li, Corros. Sci. 43, 1095(2001).Google Scholar
  14. 14.
    N. Babu, R. Balasubramaniam, and A. Ghosh, Corros. Sci. 43, 2239(2001).Google Scholar
  15. 15.
    C. Wagner, Electrochemistry 63, 772(1959).Google Scholar
  16. 16.
    S. Becker, A. Rahmel, M. Schorr, and M. Schütze, Oxid. Met. 38, 425(1992).Google Scholar
  17. 17.
    V. Shemet, H. Hoven, and W. J. Quadakkers, Intermetallics 5, 311(1997).Google Scholar
  18. 18.
    F. Dettenwanger, E. Schumann, J. Rakowski, G. H. Meier, and M. Ruhle, Mater. Corros. 48, 23(1997).Google Scholar
  19. 19.
    C. Lang and M. Schütze, Mater. Corros. 48, 13(1997).Google Scholar
  20. 20.
    M. R. Yang and S. K. Wu, Oxid. Met. 54, 473(2000).Google Scholar
  21. 21.
    S. K. Varma, A. Chan, and R. N. Mahapatra, Oxid. Met. 55, 423(2001).Google Scholar
  22. 22.
    R. A. Langensiepen, R. E. Tressler, and P. R. Howell, J. Mater. Sci. 18, 2771(1983).Google Scholar
  23. 23.
    A. Rahmel and P. J. Spencer, Oxid. Met. 35, 53(1991).Google Scholar
  24. 24.
    Y. C. Zhou and Z. M. Sun, Phys. Rev. B 61, 12570(2000).Google Scholar
  25. 25.
    C. Liu, A. M. Huntz, and J. L. Lebrun, Mater. Sci. Eng. A160, 113(1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • X.H. Wang
    • 1
  • Y.C. Zhou
    • 1
  1. 1.High-Performance Ceramic DivisionShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of SciencesShenyangP.R. China

Personalised recommendations