Breast Cancer Research and Treatment

, Volume 78, Issue 3, pp 313–322 | Cite as

The 17q23 Amplicon and Breast Cancer

  • Colleen S. Sinclair
  • Matthew Rowley
  • Ali Naderi
  • Fergus J. Couch


A novel region of amplification in breast tumors was recently identified on chromosome 17q23. Extensive mapping of the amplicon by Southern blotting and fluorescence in situ hybridization (FISH) in breast cancer cell lines determined that the amplicon can be up to 4 Mbp in size and may contain 50 genes. Copy number analysis at 50–75 kb resolution in breast cancer cell lines and breast tumors identified several independently amplified regions within the amplicon, suggesting that a number of genes are selected for amplification because they independently contribute to tumor formation and progression. Support for this hypothesis comes from studies demonstrating that many of the amplified genes are over-expressed in breast cancer cell lines and tumors, and that the RPS6KB1, TBX2, and PPM1D genes from the region, that are amplified and over-expressed in breast tumors and cell lines, contribute to tumor formation and/or tumor progression. In this review we summarize the structural studies of the amplicon that have been carried out, we outline the evidence implicating the RPS6KB1, TBX2, and PPM1D genes as oncogenes, and we describe some of the other candidate oncogenes from the region.

amplification breast cancer chromosome 17q23 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM: Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 91: 2156-2160, 1994Google Scholar
  2. 2.
    Ried T, Just KE, Holtgreve-Grez H, du Manoir S, Speicher MR, Schrock E, Latham C, Blegen H, Zetterberg A, Cremer T, et al.: Comparative genomic hybridization of formalin-fixed, paraffin-embedded breast tumors reveals different patterns of chromosomal gains and losses in fibroadenomas and diploid and aneuploid carcinomas. Cancer Res 55: 5415-5423, 1995Google Scholar
  3. 3.
    Kuukasjarvi T, Karhu R, Tanner M, Kahkonen M, Schaffer A, Nupponen N, Pennanen S, Kallioniemi A, Kallioniemi OP, Isola J: Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 57: 1597-1604, 1997Google Scholar
  4. 4.
    Tirkkonen M, Johannsson O, Agnarsson BA, Olsson H, Ingvarsson S, Karhu R, Tanner M, Isola J, Barkardottir RB, Borg A, Kallioniemi OP: Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res 57: 1222-1227, 1997Google Scholar
  5. 5.
    Isola JJ, Kallioniemi OP, Chu LW, Fuqua SA, Hilsenbeck SG, Osborne CK, Waldman FM: Genetic aberrations detected by comparative genomic hybridization predict outcome in nodenegative breast cancer. Am J Pathol 147: 905-911, 1995Google Scholar
  6. 6.
    Hermsen MA, Baak JP, Meijer GA, Weiss JM, Walboomers JW, Snijders PJ, van Diest PJ: Genetic analysis of 53 lymph node-negative breast carcinomas by CGH and relation to clinical, pathological, morphometric, and DNA cytometric prognostic factors. J Pathol 186: 356-362, 1998Google Scholar
  7. 7.
    Nishizaki T, Chew K, Chu L, Isola J, Kallioniemi A, Weidner N, Waldman FM: Genetic alterations in lobular breast cancer by comparative genomic hybridization. Int J Cancer 74: 513-517, 1997Google Scholar
  8. 8.
    Gunther K, Merkelbach-Bruse S, Amo-Takyi BK, Handt S, Schroder W, Tietze L: Differences in genetic alterations between primary lobular and ductal breast cancers detected by comparative genomic hybridization. J Pathol 193: 40-47, 2001Google Scholar
  9. 9.
    Ried T, Petersen I, Holtgreve-Grez H, Speicher MR, Schrock E, du Manoir S, Cremer T: Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res 54: 1801-1806, 1994Google Scholar
  10. 10.
    Petersen I, Bujard M, Petersen S, Wolf G, Goeze A, Schwendel A, Langreck H, Gellert K, Reichel M, Just K, du Manoir S, Cremer T, Dietel M, Ried T: Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res 57: 2331-2335, 1997Google Scholar
  11. 11.
    Sonoda G, Palazzo J, du Manoir S, Godwin AK, Feder M, Yakushiji M, Testa JR: Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Genes Chromosomes Cancer 20: 320-328, 1997Google Scholar
  12. 12.
    Solinas-Toldo S, Wallrapp C, Muller-Pillasch F, Bentz M, Gress T, Lichter P: Mapping of chromosomal imbalances in pancreatic carcinoma by comparative genomic hybridization. Cancer Res 56: 3803-3807, 1996Google Scholar
  13. 13.
    Kallioniemi A, Kallioniemi OP, Citro G, Sauter G, DeVries S, Kerschmann R, Caroll P, Waldman F: Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization. Genes Chromosomes Cancer 12: 213-219, 1995Google Scholar
  14. 14.
    Koo SH, Kwon KC, Park JW, Lee YE, Kim JW: Characterization of chromosomal breakpoints in an ALL patient using cross-species color banding. Cancer Genet Cytogenet 119: 118-120, 2000Google Scholar
  15. 15.
    Voorter C, Joos S, Bringuier PP, Vallinga M, Poddighe P, Schalken J, du Manoir S, Ramaekers F, Lichter P, Hopman A: Detection of chromosomal imbalances in transitional cell carcinoma of the bladder by comparative genomic hybridization. Am J Pathol 146: 1341-1354, 1995Google Scholar
  16. 16.
    Wong N, Lai P, Lee SW, Fan S, Pang E, Liew CT, Sheng Z, Lau JW, Johnson PJ: Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. Am J Pathol 154: 37-43, 1999Google Scholar
  17. 17.
    Pack SD, Karkera JD, Zhuang Z, Pak ED, Balan KV, Hwu P, Park WS, Pham T, Ault DO, Glaser M, Liotta L, Detera-Wadleigh SD, Wadleigh RG: Molecular cytogenetic fingerprinting of esophageal squamous cell carcinoma by comparative genomic hybridization reveals a consistent pattern of chromosomal alterations. Genes Chromosomes Cancer 25: 160-168, 1999Google Scholar
  18. 18.
    Suehiro Y, Umayahara K, Ogata H, Numa F, Yamashita Y, Oga A, Morioka H, Ito T, Kato H, Sasaki K: Genetic aberrations detected by comparative genomic hybridization predict outcome in patients with endometrioid carcinoma. Genes Chromosomes Cancer 29: 75-82, 2000Google Scholar
  19. 19.
    Kiechle M, Hinrichs M, Jacobsen A, Luttges J, Pfisterer J, Kommoss F, Arnold N: Genetic imbalances in precursor lesions of endometrial cancer detected by comparative genomic hybridization. Am J Pathol 156: 1827-1833, 2000Google Scholar
  20. 20.
    Plantaz D, Mohapatra G, Matthay KK, Pellarin M, Seeger RC, Feuerstein BG: Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization. Am J Pathol 150: 81-89, 1997Google Scholar
  21. 21.
    Khan J, Parsa NZ, Harada T, Meltzer PS, Carter NP: Detection of gains and losses in 18 meningiomas by comparative genomic hybridization. Cancer Genet Cytogenet 103: 95-100, 1998Google Scholar
  22. 22.
    Cai DX, James CD, Scheithauer BW, Couch FJ, Perry A: PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 115: 213-218, 2001Google Scholar
  23. 23.
    Wu GJ, Sinclair CS, Paape J, Ingle JN, Roche PC, James CD, Couch FJ: 17q23 amplifications in breast cancer involve the PAT1, RAD51C, PS6K, and SIGMA1B genes. Cancer Res 60: 5371-5375, 2000Google Scholar
  24. 24.
    Barlund M, Monni O, Kononen J, Cornelison R, Torhorst J, Sauter G, Kallioniemi O-P, Kallioniemi A: Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res 60: 5340-5344, 2000Google Scholar
  25. 25.
    Sinclair CS, Berry R, Schaid D, Thibodeau SN, Couch FJ: BRCA1 and BRCA2 have a limited role in familial prostate cancer. Cancer Res 60: 1371-1375, 2000Google Scholar
  26. 26.
    Wu G, Sinclair C, Hinson S, Ingle JN, Roche PC, Couch FJ: Structural analysis of the 17q22-23 amplicon identifies several independent targets of amplification in breast cancer cell lines and tumors. Cancer Res 61: 4951-4955, 2001Google Scholar
  27. 27.
    Barlund M, Tirkkonen M, Forozan F, Tanner MM, Kallioniemi O, Kallioniemi A: Increased copy number at 17q22-q24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosomes Cancer 20: 372-376, 1997Google Scholar
  28. 28.
    Couch FJ, Wang XY, Wu GJ, Qian J, Jenkins RB, James CD: Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 59: 1408-1411, 1999Google Scholar
  29. 29.
    Erson AE, Niell BL, DeMers SK, Rouillard JM, Hanash SM, Petty EM: Overexpressed genes/ESTs and characterization of distinct amplicons on 17q23 in breast cancer cells. Neoplasia 3: 521-526, 2001Google Scholar
  30. 30.
    Monni O, Barlund M, Mousses S, Kononen J, Sauter G, Heiskanen M, Paavola P, Avela K, Chen Y, Bittner ML, Kallioniemi A: Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc Natl Acad Sci USA 98: 5711-5716, 2001Google Scholar
  31. 31.
    Barlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML, Torhorst J, Haas P, Bucher C, Sauter G, Kallioniemi OP, Kallioniemi A: Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 92: 1252-1259, 2000Google Scholar
  32. 32.
    Erikson E, Maller JL: A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc Natl Acad Sci USA 82: 742-746, 1985Google Scholar
  33. 33.
    Berven LA, Crouch MF: Cellular function of p70S6K: a role in regulating cell motility. Immunol Cell Biol 78: 447-451, 2000Google Scholar
  34. 34.
    Gonzalez-Garcia A, Garrido E, Hernandez C, Alvarez B, Jimenez C, Cantrell DA, Pullen N, Carrera AC: A new role for the p85-phosphatidylinositol 3-kinase regulatory subunit linking FRAP to p70 S6 kinase activation. J Biol Chem 277: 1500-1508, 2002Google Scholar
  35. 35.
    Aoki M, Blazek E, Vogt PK: A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc Natl Acad Sci USA 98: 136-141, 2001Google Scholar
  36. 36.
    Dufner A, Thomas G: Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253: 100-109, 1999Google Scholar
  37. 37.
    Feng LX, Ravindranath N, Dym M: Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in spermatogonia. J Biol Chem 275: 25572-25576, 2000Google Scholar
  38. 38.
    Lambert JM, Karnoub AE, Graves LM, Campbell SL, Der CJ: Role of MLK3-mediated activation of p70 S6 kinase in Rac1 transformation. J Biol Chem 277: 4770-4777, 2002Google Scholar
  39. 39.
    Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, Abraham RT, Lawrence Jr JC, Houghton PJ: Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 54: 815-824, 1998Google Scholar
  40. 40.
    Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R: An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/-mice. Proc Natl Acad Sci USA 98: 10320-10325, 2001Google Scholar
  41. 41.
    Chen J, Zhong Q, Wang J, Cameron RS, Borke JL, Isales CM, Bollag RJ: Microarray analysis of Tbx2-directed gene expression: a possible role in osteogenesis. Mol Cell Endocrinol 177: 43-54, 2001Google Scholar
  42. 42.
    Paxton C, Zhao H, Chin Y, Langner K, Reecy J: Murine Tbx2 contains domains that activate and repress gene transcription. Gene 283: 117-124, 2002Google Scholar
  43. 43.
    Habets PE, Moorman AF, Clout DE, van Roon MA, Lingbeek M, van Lohuizen M, Campione M, Christoffels VM: Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 16: 1234-1246, 2002Google Scholar
  44. 44.
    Takabatake Y, Takabatake T, Sasagawa S, Takeshima K: Conserved expression control and shared activity between cognate T-box genes Tbx2 and Tbx3 in connection with Sonic hedgehog signaling during Xenopus eye development. Dev Growth Differ 44: 257-271, 2002Google Scholar
  45. 45.
    Yamada M, Revelli JP, Eichele G, Barron M, Schwartz RJ: Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev Biol 228: 95-105, 2000Google Scholar
  46. 46.
    Sowden JC, Holt JK, Meins M, Smith HK, Bhattacharya SS: Expression of Drosophila omb-related T-box genes in the developing human and mouse neural retina. Invest Ophthalmol Vis Sci 42: 3095-3102, 2001Google Scholar
  47. 47.
    Firnberg N, Neubuser A: FGF signaling regulates expression of Tbx2, Erm, Pea3, and Pax3 in the early nasal region. Dev Biol 247: 237-250, 2002Google Scholar
  48. 48.
    Chapman DL, Garvey N, Hancock S, Alexiou M, Agulnik SI, Gibson-Brown JJ, Cebra-Thomas J, Bollag RJ, Silver LM, Papaioannou VE: Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev Dyn 206: 379-390, 1996Google Scholar
  49. 49.
    Bollag RJ, Siegfried Z, Cebra-Thomas JA, Garvey N, Davison EM, Silver LM: An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nat Genet 7: 383-389, 1994Google Scholar
  50. 50.
    Lingbeek ME, Jacobs JJ, Van Lohuizen M: The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator. J Biol Chem 277: 26120-26127, 2002Google Scholar
  51. 51.
    Jacobs JJ, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM, van Welsem T, van De Vijver MJ, Koh EY, Daley GQ, van Lohuizen M: Senescence bypass screen identifies TBX2, which represses cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nat Genet 26: 291-299, 2000Google Scholar
  52. 52.
    Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA, Ambrosino C, Sauter G, Nebreda AR, Anderson CW, Kallioniemi A, Fornace Jr AJ, Appella E: Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31: 210-215, 2002Google Scholar
  53. 53.
    Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace Jr AJ: Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. Embo J 18: 6845-6854, 1999Google Scholar
  54. 54.
    Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H, Taya Y, Imai K: p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. Embo J 19: 6517-6526, 2000Google Scholar
  55. 55.
    Choi KC, Kang SK, Tai CJ, Auersperg N, Leung PC: Follicle-stimulating hormone activates mitogen-activated protein kinase in preneoplastic and neoplastic ovarian surface epithelial cells. J Clin Endocrinol Metabiol 87: 2245-2253, 2002Google Scholar
  56. 56.
    Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, Vande Woude GF, O'Connor PM, Appella E: Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 94: 6048-6053, 1997Google Scholar
  57. 57.
    Zheng P, Eastman J, Vande Pol S, Pimplikar SW: PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein. Proc Natl Acad Sci USA 95: 14745-14750, 1998Google Scholar
  58. 58.
    Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, Wahrer DC, Sgroi DC, Lane WS, Haber DA, Livingston DM: BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105: 149-160, 2001Google Scholar
  59. 59.
    Koh CG, Tan EJ, Manser E, Lim L: The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr Biol 12: 317-321, 2002Google Scholar
  60. 60.
    Courjal F, Theillet C: Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res 57: 4368-4377, 1997Google Scholar
  61. 61.
    Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP: Molecular cytogenetics of primary breast cancer by CGH. Genes Chrom. Cancer 21: 177-184, 1998Google Scholar
  62. 62.
    Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, Reithdorf L, Brinkschmidt C, Dockhorn-Dworniczak B, Boecker W: Comparative genomic hybridization of ductal carcinoma in situ of the breastevidence of multiple genetic pathways. J. Pathology 187: 396-402, 1999Google Scholar
  63. 63.
    Forozan F, Mahlamaki EH, Monni O, Chen Y, Veldman R, Jiang Y, Gooden GC, Ethier SP, Kallioniemi A, Kallioniemi OP: Comparative genomic hybridization analysis of 38 breast cancer cell lines: A basis for interpreting complementary DNA microarray data. Cancer Res 60: 4519-4525, 2000Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Colleen S. Sinclair
    • 1
  • Matthew Rowley
    • 1
  • Ali Naderi
    • 1
  • Fergus J. Couch
    • 1
  1. 1.Division of Experimental PathologyMayo ClinicRochesterUSA

Personalised recommendations