Advertisement

Plant Growth Regulation

, Volume 40, Issue 1, pp 29–32 | Cite as

Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity

  • S. Anuradha
  • S. Seeta Ram Rao
Article

Abstract

The effect of applying brassinosteroids to seeds on growth, pigment levels and nitrate reductase activity of rice (Oryza sativa L.) plants grown on saline substratum was investigated. Brassinosteroids reduced the impact of salt stress on growth, considerably restored pigment levels and increased of nitrate reductase activity.

Brassinosteroids Chlorophylls Growth Nitrate reductase Salt stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anuradha S. and Rao S.S.R. 2001. Effect of brassinosteroids on salinity stress induced inhibition of germination and seedling growth of rice (Oryza sativa. L). Plant Growth Regul. 33: 151–153.Google Scholar
  2. Arnon D.I. 1949. Copper enzyme in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24: 1–15.Google Scholar
  3. Asami T., Min Y.K., Nagata N., Yamagishi K., Takatsuto S., Fujioka S. et al. 2000. Characterization of brassinozole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol. 123: 93–100.Google Scholar
  4. Bishop G.J. and Yokota T. 2001. Plants steroid hormones, brassinosteroids: Current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol. 42: 114–120.Google Scholar
  5. Calza R., Huttner E., Vincentz M., Rauze P., Vaucheret H., Cherel I. et al. 1987. Complimentary to tobacco nitrate reductase m-RNA and encoding epitopes common to the nitrate reductase from higher plants. Mol. Gen. Genet. 209: 552–562.Google Scholar
  6. Clouse S.D. and Sasse J.M. 1998. Brassinosteroids: Essential regulators of plant growth and development. Annu Rev. Plant Physiol Plant Mol. Biol. 49: 427–451.Google Scholar
  7. Cramer M.D., Schierhold A., Wang Y.Z. and Lips S.H. 1995. The influence of salinity on utilization of root anaplerotic carbon and nitrogen metabolism in tomato seedlings. J. Expt. Bot. 46: 1569–1577.Google Scholar
  8. Jaworski E.G. 1971. Nitrate reductase assay in intact plant tissues. Biochem Biophys Res. Commun. 43: 1274–1279.Google Scholar
  9. Kalituho L.N., Chaika M.T., Mazhul V.M. and Khripach V.A. 1996. Effect of 24-epibrassinolide on pigment apparatus formation. Proc. Plant Growth Regul. Soc. Am. 23: 36–40.Google Scholar
  10. Kamuro Y. and Takatsuto S. 1999. Practical Applications of Brassinosteroids in agricultural Fields. In: Sakurai A., Yokota T. and Clouse S.D. (eds), Brassinosteroids: Steroidal Plant Hormones. Springer-Verlag, Tokyo, pp. 223–241.Google Scholar
  11. Kauschmann A., Jessop A., Konez C., Szekeres M., Willimitzer L. and Altmann T. 1996. Genetic evidence for an essential role of brassinosteroids in plant development. Plant J. 9: 701–713.Google Scholar
  12. Koka C.V., Cerny R.E., Gardner R.G., Noguchi T., Fujioka S., Takatsuto S. et al. 2000. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroids biosynthesis and response. Plant Physiol. 122: 85–98.Google Scholar
  13. Krizek D.T. and Mandava N.B. 1983. Influence of spectral quality on the growth response of intact bean plants to brassinosteroid, a growth promoting steroidal lactone. II-Chlorophyll content and partitioning of assimilate. Physiol Plant. 57: 324–329.Google Scholar
  14. Larcher W. 1995. Physiological Plant Ecology-Ecophysiology and Stress Physiology of Functional Groups. 3rd edn. Springer, Tokyo.Google Scholar
  15. Li J.M., Nagpal P., Vitart V., Mc Morris T.C. and Chory J. 1996. A role for bassinosteroids in light dependent development of Arabidopsis. Science 272: 398–401.Google Scholar
  16. Nomura T., Nakayama N., Reid J.B., Takeuchi Y. and Yokota T. 1997. Blockage of brassinosteroid biosynthesis and sensitivity cause dwarfism in Pisum sativum. Plant Physiol. 113: 31–37.Google Scholar
  17. Pandey U.K. and Saxena H.K. 1987. Effect of soil salinity on chlorophyll, photosynthesis, respiration and ionic composition at various growth stages in paddy. Indian J. Agric. Chem. 20: 149–155.Google Scholar
  18. Salma S.T., Busheva S.M., Arafa A.A., Garab G. and Erdei L. 1994. Effect of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. J. Plant Physiol. 144: 241–247.Google Scholar
  19. Sasse J.M. 1997. Recent progress in brassinosteroid research. Physiol Plant. 100: 697–701.Google Scholar
  20. Sasse J.M., Smith R. and Hudson I. 1995. Effect of 24-epibrassinolide on germination of seeds of Eucalyptus camaldulensis in saline conditions. Proc. Plant Growth Regul. Soc. Amer. 22: 136–141.Google Scholar
  21. Sinel'nikova V.N., Kosareva I.A. and Bazhanov I.A. 1998. Effect of chloride salinity on functional changes in the photosynthetic apparatus of tomato varieties. Sbovnik Nauchnykh Trudov Po Prikladnoi Botanike., Genetike i Selektsii 116: 64–71.Google Scholar
  22. Srivastava H.S. 1995. Nitrate reductase. In: Srivastava A. and Singh R.P. (eds), Nitrogen Nutrition in Higher Plants. Associated Publishing Company, New Delhi, pp. 145–164.Google Scholar
  23. Szekeres M., Nemeth K., Konez-Kalman A., Mathur J., Kauschmann A., Redei G.P. et al. 1999. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and deetiolation in Arabidopsis. Cell. 85: 171–182.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. Anuradha
    • 1
  • S. Seeta Ram Rao
    • 1
  1. 1.Department of BotanyOsmania UniversityHyderabadIndia

Personalised recommendations