Euphytica

, Volume 130, Issue 3, pp 397–404

DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques

  • Sunil Archak
  • Ambika B. Gaikwad
  • Diksha Gautam
  • E.V.V.B. Rao
  • K.R.M. Swamy
  • J.L. Karihaloo
Article

Abstract

Indian cashew breeding programme has produced 24 selections and 11 hybrids with increased yield and excellent nut characters. Molecular profiles of these varieties were developed using a combination of five RAPD and four ISSR primers pre-selected for maximum discrimination and repeatability. A total of 94 markers were generated which discriminated all the varieties with a probability of identical match by chance of2.8 × 10-11. There was no correlation between the relationships based on molecular data and the pedigree of the varieties. Narrow range of average similarity values among major cashew breeding centres with only 3.6% of molecular variance partitioned between them was attributed to the exchange of genetic material in developing varieties. Difference in the average similarity coefficients between selections and hybrids was low indicating the need and scope for identification of more parental lines in enhancing the effectiveness of hybridisation programme.

Anacardium occidentale cashew DNA fingerprinting ISSR RAPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blair, M.W., O. Panaud & S.R. McCouch, 1999. Inter simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice. Theor Appl Genet 98: 780–792.CrossRefGoogle Scholar
  2. Bornet, B. & M. Branchard, 2001. Nonanchored inter simple sequence repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19: 209–215.Google Scholar
  3. Dhanaraj, A.L., E.V.V.B. Rao, K.R.M. Swamy, M.G. Bhat, D. Theertha Prasad & S.N. Sondur, 2002. Using RAPDs to assess the diversity in Indian cashew (Anacardium occidentale L.) germplasm. J Hort Sci Biotech 77: 41–47.Google Scholar
  4. Doyle, J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  5. Excoffier, L., P.E. Smouse & J.M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  6. Fang, D.Q. & M.Z. Roose, 1997. Identification of closely related citrus cultivars with inter simple sequence repeat markers. Theor Appl Genet 95: 408–417.CrossRefGoogle Scholar
  7. Gupta, M., Y.S. Chyi, J. Romero-Severson & J.L. Owen, 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89: 998–1006.CrossRefGoogle Scholar
  8. Harris, S.A., 1999. RAPDs in systematics-a useful methodology? In: P.M. Hollingsworth, R.M. Bateman & R.J. Gornall (Eds.), Molecular Systematics and Plant Evolution, pp. 211-228. Taylor & Francis, London, UK.Google Scholar
  9. Huff, D.R., R. Peakall & P.E. Smouse, 1993. RAPD variation within and among natural populations of outcrossing buffalo grass Buchloe dactyloides. Theor Appl Genet 86: 927–934.CrossRefGoogle Scholar
  10. Karp, A., P.G. Issar & D.S. Ingram, 1998. Molecular Tools for Screening Biodiversity. Chapman & Hall, London, UK.Google Scholar
  11. Mneney, E.E., S.H. Mantell, & M. Bennett, 2001. Use of random amplified polymorphic DNA RAPD) markers to reveal genetic diversity within and between populations of cashew (Anacardium occidentale L.). J Hort Sci Biotech 76: 375–383.Google Scholar
  12. Page, R.D.M., 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comp Appl Biosci 12: 357–358.PubMedGoogle Scholar
  13. Pavlicek, A., S. Hrda, & J. Flegr, 1999. FreeTree-Freeware program for construction of phylogenetic trees on the basis of distance data & bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biologica (Praha) 45: 97–99.Google Scholar
  14. Prevost, A. & M.J. Wilkinson, 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98: 107–112.CrossRefGoogle Scholar
  15. Qian, W., S. Ge & D.Y. Hong, 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor Appl Genet 102: 440–449.CrossRefGoogle Scholar
  16. Ramakrishna, W., M.D. Lagu, V.S. Gupta & P.K. Ranjekar, 1994. DNA fingerprinting in rice using oligonucleotide probes specific for simple repetitive DNA sequences. Theor Appl Genet 88: 402–406.Google Scholar
  17. Rao, E.V.V.B. & K.R.M. Swamy, 1994. Genetic resources of cashew. In: K.L. Chadha & P. Rethinam (Eds.), Advances in Horticulture, vol. 9, Plantation and spice crops Part I. pp. 79-97. Malhotra Publishing House, New Delhi.Google Scholar
  18. Rao, E.V.V.B., K.R.M. Swamy & M.G. Bhat, 1998. Status of cashew breeding & future priorities. J Plant Crops 26: 103–114.Google Scholar
  19. Rohlf, F.J., 1993. NTSYS-PC Numerical Taxonomy and Multivariate Analysis System, version 1.70. Exeter Publishing, Ltd., Setauket, New York.Google Scholar
  20. Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA. 81: 8014–8018.PubMedCrossRefGoogle Scholar
  21. Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy. Freeman, San Francisco.Google Scholar
  22. Swamy, K.R.M., E.V.V.B. Rao, & M.G. Bhat, 1998. Catalogue of Minimum Descriptors of Cashew (Anacardium occidentale L.) Germplasm Accessions-II. National Research Centre for Cashew, Puttur, Karnataka.Google Scholar
  23. Weising, K., H. Nybom, K. Wolff & W. Meyer, 1995. DNA Fingerprinting in Plants and Fungi. CRC Press, Boca Raton, Florida.Google Scholar
  24. Welsh, J. & M. McClelland, 1990. Fingerprinting genomes using PCR arbitrary primers. Nucleic Acids Res 18: 7213–7218.PubMedGoogle Scholar
  25. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski, & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18: 6531–6535.PubMedGoogle Scholar
  26. Zietkiewicz, E., A. Rafalski & D. Labuda, 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176–183.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sunil Archak
    • 1
  • Ambika B. Gaikwad
    • 1
  • Diksha Gautam
    • 1
  • E.V.V.B. Rao
    • 1
  • K.R.M. Swamy
    • 1
  • J.L. Karihaloo
    • 1
  1. 1.NRC on DNA Fingerprinting, NBPGRNew DelhiIndia

Personalised recommendations