Advertisement

Euphytica

, Volume 131, Issue 1, pp 1–14 | Cite as

Selection for bean and liquor qualities within related hybrids of Arabica coffee in multilocal field trials

  • C. O. Agwanda
  • P. Baradat
  • A. B. Eskes
  • C. Cilas
  • A. Charrier
Article

Abstract

The success of a new variety of Arabica coffee (Coffea arabica L.) depends to an important extent on its liquor and bean qualities. Selection for these traits is however constrained by the prevalence of large genotype-by-environment (G×E)interactions in conjunction with the low genetic variability characteristic of this species. The aim of this study was to assess the extent to which key bean and liquor traits are affected by the environments and could be combined in order to improve the efficiency of selection for coffee quality in a narrow genetic basis set of hybrids obtained from a set of related lines and collectively representing the Ruiru 11 cultivar. Twenty-one full-sib families representative of this hybrid cultivar grown in Kenya in five sites exhibiting strong edaphic and climatic differences were used for the study. Rainfall amounts during various phases of berry development were used to explain the differences observed in the discriminating abilities of the locations for bean and liquor traits. The results showed that these families were best differentiated for bean sizes in the site where moisture supply was optimal throughout berry expansion and filling stages, whereas discrimination on the basis of liquor traits were best observed in the site where moderate moisture stress occurred during bean filling stage. The overall precision in prediction of family values was low for liquor qualities; but a much more efficient selection for large bold beans, optimally based on the AA grade was shown to be possible. Selection indices for family selection were computed to realize a trade-off between genetic gains in bean size and liquor flavour.

Arabica coffee Coffea arabica L. genotype-by-environmentinteraction coffee quality coefficients of genetic prediction selection indices Kenya 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AFNOR, 1991. Contrôle de la qualité des produits alimentaires analyse sensorielle, 4e édition. AFNOR-DGCCRF, Paris.Google Scholar
  2. Allen, F.L., R.E. Comstock & D.C. Rasmusson, 1978. Optimal environments for yield testing. Crop Sci 18: 747-751.CrossRefGoogle Scholar
  3. Anon, 1983. Coffee Growers Hand Book. Coffee Research Foundation, Ruiru, Kenya, 130 p.Google Scholar
  4. Baradat, P., 1976. Use of Juvenile-Mature Relationships in Individual Selection including Information from Relatives. Proc. IUFRO Meet. Adv. generation breed., Bordeaux, pp. 121-138.Google Scholar
  5. Baradat, P. & T. Labbé, 1995. OPEP. Un logiciel intégré pour l'amélioration des plantes pérennes. In: CIRAD (Ed.), Traitements Statistiques des essais de Sélection. Stratégies d'Amélioration des Plantes Pérennes, pp. 303-330. Montpellier, France.Google Scholar
  6. Baradat, P., Th. Labbé & J.M. Bouvet, 1995. Conception d'index pour la sélection réciproque récurrente Aspects génétiques, statistiques et informatiques. In: CIRAD (Ed.), Traitement Statistique des Essais de Sélection. Stratégies d'Amélioration des Plantes Pérennes, pp. 101-150. Montpellier, France.Google Scholar
  7. Baradat, P. & M.L. Desprez-Loustau, 1997. Analyse diallèle et intégration dans le programme d'amélioration du pin maritime de la sensibilité à la rouille courbeuse. Ann Forest Sci 54: 83-106.Google Scholar
  8. Cannel, M.G.R., 1971. Seasonal patterns of growth and development of Arabica coffee in Kenya. iv. effect of seasonal differences in rain fall on bean size. Kenya Coffee 36: 1-5.Google Scholar
  9. Cannel, M.G.R., 1975. Crop physiological aspects of coffee bean yields: a review. J Coffee Res 5(1/2): 7-20.Google Scholar
  10. Castillo-Z., J. & G. Moreno-R., 1988. La variedad Colombia. Cenicafé publication, Chinchina-Caldas, Colombia.Google Scholar
  11. Charmetant, P. & T. Leroy, 1985. Etude de l'influence de différents facteurs agronomiques et génétiques sur la granulométrie du café Robusta. Proc. 11th Int. Scient. Conf. On Coffee Sci., Lomé, pp. 489-494.Google Scholar
  12. Charrier, A., 1982. Quelques Réflexions sur les Possibilités d'Amélioration Génétique de la Qualité des Cafés. Proc. 10th Int. Scient. Conf. On Coffee Sci., Salvador, pp. 369-374.Google Scholar
  13. Devonshire, C.R., 1956. Explanation of the coffee report form. Coffee Board of Kenya Monthly Bull 21: 186-187.Google Scholar
  14. Eberhart, S.A. & W.A. Russel, 1966. Stability parameters for comparing varieties. Crop Sci 6: 36-40.CrossRefGoogle Scholar
  15. Finlay, K.W. & G.N. Wilkinson, 1963. The analysis of adaptation in a plant breeding programme. Aust J Agric Res 14: 742-754.CrossRefGoogle Scholar
  16. Henderson, C.R., 1977. Prediction of Future Records. Proc. Intern. Conf. on Quantitative Genetics, 16-21/08/1976. The Iowa State Univ. Press, pp. 615-638.Google Scholar
  17. Janssens, M.J.J., 1979. Co-heritability: its relation to correlated response, linkage and peiotropy in case of polygenic inheritance. Euphytica 28: 601-608.CrossRefGoogle Scholar
  18. Johnson, G.R. & K.J. Frey, 1967. Heritability of quantitative attributes of Oats (Avena sp.) at varying levels of environmental stress. Crop Sci 7: 43-46.CrossRefGoogle Scholar
  19. Kanechi, M., N. Uchida, T. Yasuda & T. Yamaguchi, 1995. Water Stress Effects on Leaf Photosynthesis and Diffusive Conductance of Three Coffea Species (C. arabica, C. canephora, C. liberica). Proc. 16th Int. Scient. Conf. On Coffee Sci., Kyoto, pp. 804-811.Google Scholar
  20. Lashermes, P., M.C. Combes, P. Trouslot, F. Anthony & A. Charrier, 1996a. Molecular Analysis of the Origin and Genetic Diversity of Coffea arabica L.: Implication for Coffee Improvement. Proc. EUCARPIA Meet. on Trop. Plants, Montpellier, pp. 23-29.Google Scholar
  21. Lashermes, P., P. Trouslot, F. Anthony, M.C. Combes & A. Charrier, 1996b. Genetic diversity for RAPD markers between cultivated and wild accessions of Coffea arabica. Euphytica 87: 59-64.CrossRefGoogle Scholar
  22. Leroy, T., J.J. Perriot, A.B. Eskes, B. Guyot & C.Montagnon, 1991. Qualités Technologiques et Organoleptiques de Quelques Clones de Coffea canephora en Côte d'Ivoire. Proc. 14th Int. Scient. Conf. On Coffee Sci., San Francisco, pp. 438-443.Google Scholar
  23. Mawardi, S. & R. Hulip. 1995. Genotype by Environment Interaction of Bean Characteristics in Arabica Coffee. Proc. 16th Int. Scient. Conf. On Coffee Sci., Kyoto, pp. 637-644.Google Scholar
  24. Moreno, G., E. Moreno & G. Cadena, 1995. Bean Characteristics and Cup Quality of the Colombian Variety (Coffea arabica) as judged by International Tasting Panels. Proc. 16th Int. Scient. Conf. On Coffee Sci., Kyoto, pp. 574-583.Google Scholar
  25. Moschetto, D., C. Montagnon, B. Guyot, J.J. Periot, T. Leroy & A.B. Eskes, 1996. Studies on the effect of genotypes on the cup quality of Coffea canephora. Trop. Sci. 36: 18-31.Google Scholar
  26. Nei, M., 1960. Studies on the Application of Biometrical Genetics to Plant Breeding. Memoirs of the College of Agriculture, Kyoto University 32, 100 pp.Google Scholar
  27. Owuor, J.B.O., 1988. An assessment of the cup quality of the new disease resistant Coffea arabica cultivar Ruiru 11 in Kenya. Kenya Coffee 53: 333-336.Google Scholar
  28. Quisenberry, J.E., B. Roark, D.W. Fryrear & R.J. Kohel, 1980. Effectiveness of election in upland cotton in stress environments. Crop Sci 20: 450-453.CrossRefGoogle Scholar
  29. Raju, K.R., S. Vishveswara & C.S. Srinivasan, 1978. Association of some characters with cup quality in Coffea canephora × Coffea arabica hybrids. Indian Coffee 42: 195-197.Google Scholar
  30. Roche, D., 1995. Coffee Genetics and Quality. Proc. 16th Int. Scient. Conf. on Coffee Sci., Kyoto, pp. 584-588.Google Scholar
  31. Salazar, G.M.R., C.B. Chaves, H.N.M. Riano, P.J. Arcila & R.A. Jaramillo, 1994. Crecimiento del fruto de cafe Coffea arabica L. var Colombia. Cenicafé 45: 41-50.Google Scholar
  32. Searle, S.R., 1987. Linear Models for Unbalanced Data. Wiley, New York, 536 pp.Google Scholar
  33. Shao, J. & Tu, D. 1995. The Jackknife and Bootstrap. Springer, New York, 516 pp.Google Scholar
  34. Sivetz, M., 1972. How acidity affects coffee flavor. Food Technol 26: 70-77.Google Scholar
  35. Van Buijtenen, J.P., 1992. Chapter 2: Fundamental genetic principles. In: L. Fins, T. Friedman & V. Brotschol (Eds.), Handbook of Quantitative Forest Genetics, 403 pp. Kluwer Academic Publishers, Dordrecht.Google Scholar
  36. Van der Vossen, H.A.M., 1985. Coffee breeding and selection. In: M.N. Clifford & K.C. Wilson (Eds.), Coffee Botany, Biochemistry and Production of Beans and Beverages, pp. 48-96. Croom Helm, London, New York.Google Scholar
  37. Van der Vossen, H.A.M. & D.J.A. Walyaro, 1981. The coffee breeding programme in Kenya. A review of progress made and plan of action for the coming years. Kenya Coffee 46: 113-130.Google Scholar
  38. Vishveswara, S., 1971. Breeding for quality in coffee. Indian Coffee 35: 509-512.Google Scholar
  39. Walyaro, D.J.A., 1983. Considerations in Breeding for Improved Yield and Quality in Arabica Coffee (Coffea Arabica L.), PhD thesis, Agricultural University, Wageningen.Google Scholar
  40. Wormer, T.M., 1964. The growth of coffee berry. Ann Botany 28(109): 47-65.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • C. O. Agwanda
    • 1
  • P. Baradat
    • 2
  • A. B. Eskes
    • 3
  • C. Cilas
    • 3
  • A. Charrier
    • 4
  1. 1.Coffee Research FoundationRuiruKenya
  2. 2.UMR CIRAD-INRA AMAPMontpellier cedex 5France
  3. 3.CIRAD-CP, B.PMontpellier cedex 5France
  4. 4.ENSAM-INRAMontpellierFrance

Personalised recommendations