Advertisement

Journal of Statistical Physics

, Volume 91, Issue 1–2, pp 1–15 | Cite as

Models of Fractal River Basins

  • Marek Cieplak
  • Achille Giacometti
  • Amos Maritan
  • Andrea Rinaldo
  • Ignacio Rodriguez-Iturbe
  • Jayanth R. Banavar
Article

Abstract

Two distinct models for self-similar and self-affine river basins are numerically investigated. They yield fractal aggregation patterns following nontrivial power laws in experimentally relevant distributions. Previous numerical estimates on the critical exponents, when existing, are confirmed and superseded. A physical motivation for both models in the present framework is also discussed.

Dynamical critical phenomena growth process rivers runoff and stream flow erosion and sedimentation aggregation patterns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. G. Tarboton, R. L. Bras, and I. Rodriguez-Iturbe, Water Resour. Res. 24:1317 (1988); D. Lavallée, S. Lovejoy and D. Schertzer, Fractals in Geography, N. S. Lam and L. De Cola, eds. (Prentice Hall, Englewood Cliffs, 1993), 159; I. Rodriguez-Iturbe, M. Marani, R. Rigon, A. Rinaldo, Water Resour. Res. 30:3531 (1994); D. R. Montgomery and W. E. Dietrich, Nature 336:232 (1988); Science 255:826 (1992); S. P. Breyer and R. S. Snow, Geomorphology 5:143 (1992).Google Scholar
  2. 2.
    C. P. Stark, Nature 352:423 (1991).Google Scholar
  3. 3.
    S. S. Manna and B. Subramanian, Phys. Rev. Lett. 76:3460 (1996).Google Scholar
  4. 4.
    I. Rodriguez-Iturbe, A. Rinaldo, R. Rigon, R. L. Bras, E. Ijjasz-Vasquez, A. Marani, Water Resour. Res. 28:1095 (1992); R. Rigon, A. Rinaldo, I. Rodriguez-Iturbe, E. Ijjasz-Vasquez, R. L. Bras, Water Resour. Res. 29:1980 (1993); A. Rinaldo, I. Rodriguez-Iturbe. R. Rigon, E. Ijjasz-Vasquez and R. L. Bras, Phys. Rev. Lett. 70:822 (1993); for earlier studies linking optimization principles to drainage networks, see A. D. Howard, Water Res. Res. 7:863 (1971); 26:2107 (1990) and references therein.Google Scholar
  5. 5.
    A. Maritan, F. Colaiori, A. Flammini, M. Cieplak and J. R. Banavar, Science 272:984 (1996); F. Colaiori, A. Flammini, A. Maritan and J. R. Banavar, Phys. Rev. E 55:1298 (1997).Google Scholar
  6. 6.
    Lattice models of river basin evolution are discussed, eg., by S. Kramer and M. Marder, Phys. Rev. Lett. 68:205 (1992); R. L. Leheny and S. R. Nagel, Phys. Rev. Lett. 71:1470 (1993).Google Scholar
  7. 7.
    T. Sun, P. Meakin and T. Jøssang, Phys. Rev. E 49:4865 (1994); 51:5353 (1995); Water Res. Res. 30:2599 (1994); P. Meakin, J. Feder and T. Jøssang, Physica A 176:409 (1991).Google Scholar
  8. 8.
    A. Maritan, A. Rinaldo, R. Rigon, A. Giacometti and I. Rodriguez-Iturbe, Phys. Rev. E 53:1510 (1996).Google Scholar
  9. 9.
    J. R. Banavar, F. Colaiori, A. Flammini, A. Giacometti, A. Maritan and A. Rinaldo, Phys. Rev. Lett. 78:4522 (1997).Google Scholar
  10. 10.
    S. S. Manna, D. Dhar and S. N. Majumdar, Phys. Rev. B 46:4471 (1992).Google Scholar
  11. 11.
    R. Rigon, I. Rodriguez-Iturbe, A. Maritan, A. Giacometti, D. G. Tarboton and A. Rinaldo, Water Resour. Res. 32:3367 (1996).Google Scholar
  12. 12.
    J. T. Hack, U.S. Geol. Surv. Prof. Paper 294:1 (1957).Google Scholar
  13. 13.
    R. Chandler, J. Koplik, Lerman and J. Willemsen, J. Fluid Mech. 119:249 (1982); R. Lenormand, C. R. Seances, Acad. Sci. Ser. B 291:279 (1980).Google Scholar
  14. 14.
    See e.g., H. Takayasu, M. Takayasu, A. Provata and G. Huber, J. Stat. Phys. 65:725 (1991).Google Scholar
  15. 15.
    A.-L. Barabasi, Phys. Rev. Lett. 76:3750 (1996).Google Scholar
  16. 17.
    C. M. Newman and D. L. Stein, Phys. Rev. Lett. 72:2286 (1994).Google Scholar
  17. 18.
    M. Cieplak, A. Maritan and J. R. Banavar, Phys. Rev. Lett. 72:2320 (1994).Google Scholar
  18. 19.
    J. Feder, Fractals (Plenum, New York, 1988).Google Scholar
  19. 21.
    P. Meakin, Phys. Scr. 45:69 (1992); P. Meakin, J. Phys. A 20:L1113 (1987).Google Scholar
  20. 22.
    J. Krug and P. Meakin, Phys. Rev. A 40:2064 (1989).Google Scholar
  21. 23.
    M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett. 76:3754 (1996).Google Scholar
  22. 24.
    G. Caldarelli, A. Giacometti, A. Maritan, I. Rodrigues-Iturbe and A. Rinaldo, Phys. Rev. E 55:R4865 (1997); A. Rinaldo, I. Rodrigues-Iturbe, R. Rigon, E. Ijjazs-Vasques and R. L. Bras, Phys. Rev. Lett. 70:822 (1993).Google Scholar
  23. 25.
    B. Tadic, Phys. Rev. Lett. (in press) (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Marek Cieplak
    • 1
  • Achille Giacometti
    • 2
  • Amos Maritan
    • 3
  • Andrea Rinaldo
    • 4
  • Ignacio Rodriguez-Iturbe
    • 5
  • Jayanth R. Banavar
    • 6
  1. 1.Polish Academy of ScienceWarsawPoland
  2. 2.Dipartimento di Scienze AmbientaliINFM Unitá di VeneziaVeniceItaly
  3. 3.INFM Trieste andInternational School for Advanced Studies (SISSA)Grignano di TriesteItaly
  4. 4.Istituto di Idraulica “G. Poleni,”Unversità di PadovaPaduaItaly
  5. 5.Department of Civil EngineeringTexas A&M UniversityCollege Station
  6. 6.Department of Physics and Center for Materials PhysicsPennsylvania State UniversityUniversity Park

Personalised recommendations