Digestive Diseases and Sciences

, Volume 48, Issue 5, pp 976–985 | Cite as

Decreased Gastric Bacterial Killing and Up-Regulation of Protective Genes in Small Intestine in Gastrin-Deficient Mouse

  • Francis J. Sun
  • Simran Kaur
  • Donna Ziemer
  • Snigdha Banerjee
  • Linda C. Samuelson
  • Robert C. De Lisle


Gastrin regulates gastric acid secretion, believed to be primarily responsible for killing ingested microbes. We examined gastric killing of gavaged E. coli in gastrin-deficient mice, which have decreased gastric acid production. Additionally, the expression of intestinal genes involved in epithelial protection were analyzed: the mucus layer glycoprotein muclin, the polymeric Ig receptor, trefoil factor 3, and small proline-rich protein 2a (sprr2a). Gastric pH was 2.5 pH units greater in gastrin-deficient mice, and E. coli survival was increased greater than 20-fold at 10 min after gavage compared to control. Muclin and sprr2a gene expression were significantly increased (2.0- and 2.6-fold) in the intestine, and antibiotic treatment reversed these effects. In conclusion, reduced gastric acid secretion results in increased survival of ingested microorganisms in gastrin-deficient mice. Bacterial survival is associated with increased expression of muclin and sprr2a in the intestine, indicating that these genes play protective roles in the intestine.

gastrin intestine muclin polymeric Ig receptor small proline-rich protein 2a trefoil factor3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunt RH: The protective role of gastric acid. Scand J Gastroenterol Suppl 146:34-39, 1988Google Scholar
  2. 2.
    Dockray GJ, Varro A, Dimaline R, Wang T: The gastrins: Their production and biological activities. Annu Rev Physiol 63:119-139, 2001Google Scholar
  3. 3.
    Hinkle KL, Samuelson LC: Lessons from genetically engineered animal models. III. Lessons learned from gastrin gene deletion in mice. Am J Physiol 277:G500-G505, 1999Google Scholar
  4. 4.
    Friis-Hansen L, Sundler F, Li Y, Gillespie PJ, Saunders TL, Greenson JK, Owyang C, Rehfeld JF, Samuelson LC: Impaired gastric acid secretion in gastrin-deficient mice. Am J Physiol Gastrointest Liver Physiol 274:G561-G568, 1998Google Scholar
  5. 5.
    Zavros Y, Rieder G, Ferguson A, Samuelson LC, Merchant JL: Genetic or chemical hypochlorhydria is associated with inflammation that modulates parietal and G-cell populations in mice. Gastroenterology 122:119-133, 2002Google Scholar
  6. 6.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI: Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881-884, 2001Google Scholar
  7. 7.
    De Lisle RC: Characterization of the major sulfated protein of mouse pancreatic acinar cells: a high molecular weight peripheral membrane glycoprotein of zymogen granules. J Cell Biochem 56:385-396, 1994Google Scholar
  8. 8.
    Cheng H, Bjerknes M, Chen HY: CRP-ductin: a gene expressed in intestinal crypts and in pancreatic and hepatic ducts. Anat Rec 244:327-343, 1996Google Scholar
  9. 9.
    Hohl D, de Viragh PA, Amiguet-Barras F, Gibbs S, Backendorf C, Huber M: The small proline-rich proteins constitute a multigene family of differentially regulated cornified cell envelope precursor proteins. J Invest Dermatol 104:902-909, 1995Google Scholar
  10. 10.
    Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM: A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222-2226, 2000Google Scholar
  11. 11.
    Nester EW, Gilstrap M, Kleyn JG: Experiments in Microbiology. New York, Holt, Rinehart and Winston, 1978Google Scholar
  12. 12.
    De Lisle RC, Petitt M, Isom KS, Ziemer D: Developmental expression of a mucinlike glycoprotein (MUCLIN) in pancreas and small intestine of CF mice. Am J Physiol Gastrointest Liver Physiol 275:G219-G227, 1998Google Scholar
  13. 13.
    Koh TJ, Goldenring JR, Ito S, Mashimo H, Kopin AS, Varro A, Dockray GJ, Wang TC: Gastrin deficiency results in altered gastric differentiation and decreased colonic proliferation in mice. Gastroenterology 113:1015-1025, 1997Google Scholar
  14. 14.
    Reilly JP: Safety profile of the proton-pump inhibitors. Am J Health Syst Pharm 56:S11-S17, 1999Google Scholar
  15. 15.
    Lundell L, Miettinen P, Myrvold HE, Pedersen SA, Thor K, Andersson A, Hattlebakk J, Havu N, Janatuinen E, Levander K, Liedman B, Nyström P, The NORDIC GERD Study Group: Lack of effect of acid suppression therapy on gastric atrophy. Gastroenterology 117:319-326, 1999.Google Scholar
  16. 16.
    Nagata A, Ito M, Iwata N, Kuno J, Takano H, Minowa O, Chihara K, Matsui T, Noda T: G protein-coupled cholecystokinin-B/gastrin receptors are responsible for physiological cell growth of the stomach mucosa in vivo. Proc Natl Acad Sci USA 93:11825-11830, 1996Google Scholar
  17. 17.
    Langhans N, Rindi G, Chiu M, Rehfeld JF, Ardman B, Beinborn M, Kopin AS: Abnormal gastric histology and decreased acid production in cholecystokinin-B/gastrin receptor-deficient mice. Gastroenterology 112:280-286, 1997Google Scholar
  18. 18.
    Scarff KL, Judd LM, Toh BH, Gleeson PA, Van Driel IR: Gastric H(+),K(+)-adenosine triphosphatase beta subunit is required for normal function, development, and membrane structure of mouse parietal cells. Gastroenterology 117:605-618, 1999Google Scholar
  19. 19.
    Spicer Z, Miller ML, Andringa A, Riddle TM, Duffy JJ, Doetschman T, Shull GE: Stomachs of mice lacking the gastric H,K-ATPase alpha-subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J Biol Chem 275:21555-21565, 2000Google Scholar
  20. 20.
    Fiocchi C: Intestinal inflammation: a complex interplay of immune and nonimmune cell interactions. Am J Physiol Gastrointest Liver Physiol 273:G769-G775, 1997Google Scholar
  21. 21.
    Koch PJ, de Viragh PA, Scharer E, Bundman D, Longley MA, Bickenbach J, Kawachi Y, Suga Y, Zhou Z, Huber M, Hohl D, Kartasova T, Jarnik M, Steven AC, Roop DR: Lessons from loricrin-deficient mice: compensatory mechanisms maintaining skin barrier function in the absence of a major cornified envelope protein. J Cell Biol 151:389-400, 2000Google Scholar
  22. 22.
    Stern LE, Erwin CR, Falcone RA, Huang FS, Kemp CJ, Williams JL, Warner BW: cDNA microarray analysis of adapting bowel after intestinal resection. J Pediatr Surg 36:190-195, 2001Google Scholar
  23. 23.
    De Lisle RC, Petitt M, Huff J, Isom KS, Agbas A: MUCLIN expression in the cystic fibrosis transmembrane conductance regulator knockout mouse. Gastroenterology 113:521-532, 1997Google Scholar
  24. 24.
    De Lisle RC, Isom KS, Ziemer D, Cotton CU: Changes in the exocrine pancreas secondary to altered small intestinal function in the CF mouse. Am J Physiol Gastrointest Liver Physiol 281:G899-G906, 2001Google Scholar
  25. 25.
    Mollenhauer J, Wiemann S, Scheurlen W, Korn B, Hayashi Y, Wilgenbus KK, von Deimling A, Poustka A: DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours. Nature Genet 17:32-39, 1997Google Scholar
  26. 26.
    Holmskov U, Mollenhauer J, Madsen J, Vitved L, Gronlund J, Tornoe I, Kliem A, Reid KB, Poustka A, Skjodt K: Cloning of gp-340, a putative opsonin receptor for lung surfactant protein D. Proc Natl Acad Sci USA 96:10794-10799, 1999Google Scholar
  27. 27.
    Ligtenberg TJ, Bikker FJ, Groenink J, Tornoe I, Leth-Larsen R, Veerman EC, Nieuw Amerongen AV, Holmskov U: Human salivary agglutinin binds to lung surfactant protein-D and is identical with scavenger receptor protein gp-340. Biochem J 359:243-248, 2001Google Scholar
  28. 28.
    Prakobphol A, Xu F, Hoang VM, Larsson T, Bergstrom J, Johansson I, Frangsmyr L, Holmskov U, Leffler H, Nilsson C, Boren T, Wright JR, Stromberg N, Fisher SJ: Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340. J Biol Chem 275:39860-39866, 2000Google Scholar
  29. 29.
    Thornton DJ, Davies JR, Kirkham S, Gautrey A, Khan N, Richardson PS, Sheehan JK: Identification of a nonmucin glycoprotein (gp-340) from a purified respiratory mucin preparation: evidence for an association involving the MUC5B mucin. Glycobiology 11:969-977, 2001Google Scholar
  30. 30.
    Giraud AS: Lessons from genetically engineered animal models X. Trefoil peptide and EGF receptor/ligand transgenic mice. Am J Physiol Gastrointest Liver Physiol 278:G501-G506, 2000Google Scholar
  31. 31.
    Thim L, Mortz E: Isolation and characterization of putative trefoil peptide receptors. Regul Pept 90:61-68, 2000Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Francis J. Sun
    • 1
  • Simran Kaur
    • 2
  • Donna Ziemer
    • 2
  • Snigdha Banerjee
    • 2
  • Linda C. Samuelson
  • Robert C. De Lisle
    • 2
  1. 1.Laboratory Animal ResourcesMichiganUSA
  2. 2.Department of Anatomy & Cell BiologyUniversity of Kansas Medical CenterKansas City, KansasUSA

Personalised recommendations