, Volume 131, Issue 1, pp 137–146 | Cite as

A major QTL for common bacterial blight resistance derives from the common bean great northern landrace cultivar Montana No.5

  • Phillip N. Miklas
  • Dermot P. Coyne
  • Kenneth F. Grafton
  • Nedim Mutlu
  • Jim Reiser
  • Dale T. Lindgren
  • Shree P. Singh


Knowledge of the evolutionary origin and sources of pest resistance genes will facilitate gene deployment and development of crop cultivars with durable resistance. Our objective was to determine the source of common bacterial blight (CBB) resistance in the common bean Great Northern Nebraska #1 (GN#1) and GN#1 Selection 27 (GN#1 Sel 27). Several great northern cultivars including GN#1, GN#1 Sel 27, and Montana No.5 (the female parent of the common x tepary bean interspecific population from which GN #1 and GN # 1 Sel 27 were derived) and known susceptible checks were evaluated for CBB reaction in field and greenhouse environments. These genotypes and CBB resistant and susceptible tepary bean including Tepary #4, the male parent and presumed contributor of CBB resistance toGN#1 and GN#1 Sel 27, were assayed for presence or absence of three SCAR markers tightly linked with independent QTLs conditioning CBB resistance. The parents and F2 of Montana No. 5/GN #1 Sel 27 and Montana No.5/Othello(CBB susceptible) were screened for CBB reaction and SCAR markers. CBB resistance in Montana No.5 was comparable to that of GN#1 and GN#1 Sel27. The SAP6 SCAR marker present in GN#1 and GN#1 Sel 27 was also present in Montana No.5, and it co-segregated (R 2 =35%) with the CBB resistance in the Montana No.5/Othello F2 population. Although a few CBB resistant and susceptible transgressive segregants were found in the F2 of MontanaNo.5/GN #1 Sel 27 and later confirmed by F3 progeny tests, SAP6 SCAR marker was present in all progenies. None of the tepary bean specific CBB resistance-linked SCAR markers were present in GN#1, GN#1 Sel 27, or Montana No.5. A cluster analysis of 169 polymorphic PCR-based markers across three common bean and Tepary #4 indicated that GN#1, GN#1 Sel 27, and Montana No.5 were closely related, and not related at all with Tepary #4.Thus, these results clearly indicate Montana No.5, not Tepary #4, as the source of CBB resistance in GN#1 and GN#1 Sel 27.

Phaseolus acutifolius P. vulgaris SCAR marker tepary bean Xanthomonas axonopodis pv. phaseoli 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M.W. & A.W. Saettler, 1974. Notice of naming and release of 'Montcalm', a new halo blight-tolerant dark red kidney bean. Michigan Agric Expt Stn and United States Dep of Agric. Germplasm release notice, 1 p.Google Scholar
  2. Andrus, C.F., 1948. A method of testing beans for resistance to bacterial blight. Phytopathology 38: 160-161.Google Scholar
  3. Arnaud-Santana, E., D.P. Coyne, J.S. Beaver & H.Z. Zaiter, 1993. Effect of photoperiod and temperature on common blight disease of common beans (Phaseolus vulgaris L.). Euphytica 66: 211-216.CrossRefGoogle Scholar
  4. Beebe, S., 1989. Quantitative genetics in Phaseolus vulgaris: the example of resistance to Xanthomonas campestris pv. phaseoli, p. 213-238. In: S. Beebe (Ed), Current topics in breeding of common bean. CIAT, Cali, Colombia.Google Scholar
  5. Beebe, S.E. & M.A. Pastor-Corrales, 1991. Breeding for disease resistance, p. 561-617. In: A. van Schoonhoven & O. Voysest (Eds), Common beans: Research for crop improvement. C.A.B. International, Wallingford, UK and CIAT, Cali, Colombia.Google Scholar
  6. Coyne, D.P., 1961. Characteristics and performance of the Nebraska 1 dry bean. Annu Rpt Bean Improv Coop 5: 50.Google Scholar
  7. Coyne, D.P., D.S. Nuland, D.T. Lindgren & J.R. Steadman, 1994. 'Chase' pinto dry bean. HortScience 29: 44-45.Google Scholar
  8. Coyne, D.P., D.S. Nuland, D.T. Lindgren, J.R. Steadman, D.W. Smith, J. Gonzales, J. Schild, J. Reiser, L. Sutton, C. Carlson, J.R. Stavely & P.N. Miklas, 2000. 'Weihing' great northern disease resistant dry bean. HortScience 35: 310-312.Google Scholar
  9. Coyne, D.P., D.S. Nuland, M.L. Schuster & F.N. Anderson, 1980. Great northern 'Harris' dry bean. HortScience 15: 531.Google Scholar
  10. Coyne, D.P. & M.L. Schuster, 1970. 'Jules', a great northern dry bean variety tolerant to common blight bacterium (Xanthomonas phaseoli). Plant Dis Rptr 54: 557-559.Google Scholar
  11. Coyne, D.P. & M.L. Schuster, 1974a. 'Great Northern Star' dry bean tolerant to bacterial diseases. HortScience 11: 621.Google Scholar
  12. Coyne, D.P. & M.L. Schuster, 1974b. Inheritance and linkage relations of reaction to Xanthomonas phaseoli (E.F. Smith) Dowson (common blight), stage of development and plant habit in Phaseolus vulgaris L. Euphytica 23: 195-204.CrossRefGoogle Scholar
  13. Coyne, D.P., M.L. Schuster & S. Al-Yasiri, 1963. Reaction studies of bean species and varieties to common blight and bacterial wilt. Plant Dis Rptr 47: 534-537.Google Scholar
  14. Coyne, D.P., J.R. Steadman, D.T. Lindgren & D.S. Nuland, 1991. 'Starlight'-great northern dry bean. HortScience 26: 441-442.Google Scholar
  15. Dean, L.L., 2000. History of bean research and development, p. 3-11. In: S.P. Singh (Ed), Bean research, Production and Utilization: Proc. of the Idaho Bean Workshop, August 3 and 4, 2000. University of Idaho, Moscow.Google Scholar
  16. Guo, M., D.A. Lightfoot, M.C. Mok & D.W.S. Mok, 1991. Analyses of Phaseolus vulgaris L. and P. coccineus Lam. hybrids by RFLP: preferential transmission of P. vulgaris alleles. Theor Appl Genet 81: 703-709.CrossRefGoogle Scholar
  17. Haghighi, K.R. & P.D. Ascher, 1988. Fertile, intermediate hybrids between Phaseolus vulgaris and Phaseolus acutifolius from congruity backcrossing. Sex Plant Reprod 1: 51-58.CrossRefGoogle Scholar
  18. Honma, S., 1956. A bean interspecific hybrid. J Hered 47: 217-220.Google Scholar
  19. Hucl, P. & G.J. Scoles, 1985. Interspecific hybridization in the common bean: a review. HortScience 20: 352-357.Google Scholar
  20. Jung, G., D.P. Coyne, P. Skroch, J. Nienhuis, E. Arnaud-Santana, J. Bokosi, H. Ariyarathne, J. Steadman, J. Beaver & S. Kaeppler, 1996. Molecular markers associated with plant architecture and resistance to common blight, web blight, and rust in common beans. J Amer Soc Hort Sci 121: 794-803.Google Scholar
  21. Jung, G., P. Skroch, D.P. Coyne, J. Nienhuis, H. Ariyarathne, S. Kaeppler & M. Bassett, 1997. Molecular-marker-based genetic analysis of tepary-bean-derived common bacterial blight resistance in different developmental stages of common bean. J Am Soc Hort Sci 122: 329-337.Google Scholar
  22. Kelly, J.D., G.L. Hosfield, G.V. Varner, M.A. Uebersax & J. Taylor, 1999. Registration of 'Matterhorn' great northern bean. Crop Sci 39: 589-590.CrossRefGoogle Scholar
  23. McElroy, J.B., 1985. Breeding dry beans, P. vulgaris L., for common bacterial blight resistance derived from Phaseolus acutifolius A. Gray. Ph.D. Diss. [Diss. Abstr. Intl. 46:(7):2192B], Cornell Univ., Ithaca, NY.Google Scholar
  24. Mejía-Jiménez, A., C. Muñoz, H.J. Jacobsen, W.M. Roca & S.P. Singh, 1994. Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theor Appl Genet 88: 324-331.CrossRefGoogle Scholar
  25. Miklas, P.N., 2003. List of SCAR markers linked with disease resistance traits in common bean. Scholar
  26. Miklas, P.N., D.P. Coyne, K.F. Grafton, N. Mutlu, J. Reiser & S.P. Singh, 2002. A major QTL for common bacterial blight resistance in GN No.1 Sel. 27 derives from the great northern landrace Montana No. 5 not tepary bean. Annu Rpt Bean Improv Coop 45: 52-53.Google Scholar
  27. Miklas, P.N., R. Delorme, V. Stone, M.J. Daly, J.R. Stavely, J.R. Steadman, M.J. Bassett & J.S. Beaverm, 2000a. Bacterial fungal, virus disease loci mapped in a recombinant inbred common bean population ('Dorado/XAN176'). J Am Soc Hort Sci 125: 476-481.Google Scholar
  28. Miklas, P.N., E. Johnson, V. Stone, J.S. Beaver, C Montoya & M. Zapata, 1996. Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci 36: 1344-1351.CrossRefGoogle Scholar
  29. Miklas, P.N., J.R. Smith, K.F. Grafton & S.P. Singh, 1999. Multiplex SCAR selection for combined resistance to common bacterial blight in dry bean, p. 69. In: Agron abstracts, Madison, WI.Google Scholar
  30. Miklas, P.N., J.R. Smith, R. Riley, K.F. Grafton, S.P. Singh, G. Jung & D.P. Coyne, 2000b. Marker-assisted breeding for pyramided resistance to common bacterial blight in common bean. Annu Rpt Bean Improv Coop 43: 39-40.Google Scholar
  31. Mimms, O.L. & W.J. Zaumeyer, 1947. Growing dry beans in the western states. Farmers' Bulletin No. 1996. USDA, Washington, D.C.Google Scholar
  32. Nodari, R.O., S.M. Tsai, P. Guzmán, R.L. Gilbertson & P. Gepts, 1993. Toward an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics 134: 341-350.PubMedGoogle Scholar
  33. Parker, J.P. & T.E. Michaels, 1986. Simple genetic control of hybrid plant development in interspecific crosses between Phaseolus vulgaris L. x P. acutifolius A. Gray. Plant Breed 97: 3150-323.CrossRefGoogle Scholar
  34. Pedraza, F., G. Gallego, S. Beebe & J. Tohme, 1997. Marcadores SCAR y RAPD para la resistencia a la bacteriosis comun (CBB), p. 130-134. In: S.P. Singh and O. Voysest (Eds), Taller de Mejoramiento de Frijol para el Siglo XXI: Bases para Una Estrategia para America Latina. CIAT, Cali, Colombia.Google Scholar
  35. Pierce, W.H., 1934. Resistance to common bean mosaic in the Great Northern field bean. J. Agric. Res. 49: 183-188.Google Scholar
  36. Pratt, R.C., R.A. Bressan & P.M. Hasegawa, 1985. Genotypic diversity enhances recovery of hybrids and fertile backcrosses of Phaseolus vulgaris L. x P. acutifolius A. Gray. Euphytica 34: 329-344.CrossRefGoogle Scholar
  37. Rohlf, F.J., 1993. NTSYS-pc. Numerical taxonomy and multivariate analysis (version 2.02). Execter Publisher Ptd, Setauket, NY.Google Scholar
  38. SAS Institute, 1989. SAS/STAT user's guide. Version 6, 4th ed. SAS Inst, Cary, NC.Google Scholar
  39. Scott, M.E. & T.E. Michaels, 1990. Genetic control of abnormal seedling development in Phaseolus vulgaris L. and P. vulgaris x P. acutifolius A. Gray hybrids. Plant Breed 104: 102-107.CrossRefGoogle Scholar
  40. Scott, M.E. & T.E. Michaels, 1992. Xanthomonas resistance of Phaseolus interspecific cross selections confirmed by field performance. HortScience 27: 348-350.Google Scholar
  41. Silva, L.O., S.P. Singh & M.A. Pastor-Corrales, 1989. Inheritance of resistance to common bacterial blight in common bean. Theor Appl Genet 78: 619-624.CrossRefGoogle Scholar
  42. Singh, S.P. & C.G. Muñoz, 1999. Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci 39: 80-89.CrossRefGoogle Scholar
  43. Sutton, L.A. & D.P. Coyne, 2002. Vegetable cultivar descriptions for North America: bean-dry, lists 1-26 combined. HortScience Scholar
  44. Thomas, C.V. & J.G. Waines, 1984. Fertile backcross and allotetraploid plants from crosses between tepary beans and common beans. J Hered 75: 93-98.Google Scholar
  45. Thorman, C.E. & T.C. Osborn, 1992. Use of RAPD and RFLP markers for germplasm evaluation. In: CSSA-ASHS-AGA Joint Plant Breeding Symposium Series: Application of RAPD technology to plant breeding, Minneapolis. Crop Sci Soc Amer, Madison, WI p. 9-11.Google Scholar
  46. Yu, K., S.J. Park & V. Poysa, 2000a. Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breed 119: 411-415.CrossRefGoogle Scholar
  47. Yu, K., S.J. Park, V. Poysa & P. Gepts, 2000b. Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91: 429-434.PubMedCrossRefGoogle Scholar
  48. Zaiter, H.Z., D.P. Coyne, A.K. Vidaver & J.R. Steadman, 1989. Differential reaction of tepary bean lines to Xanthomonas campestris pv. phaseoli. HortScience 24: 134-137.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Phillip N. Miklas
    • 1
  • Dermot P. Coyne
    • 2
  • Kenneth F. Grafton
    • 3
  • Nedim Mutlu
    • 2
  • Jim Reiser
    • 2
  • Dale T. Lindgren
    • 3
  • Shree P. Singh
    • 4
  1. 1.USDA, ARSProsserU.S.A
  2. 2.University of NebraskaLincolnU.S.A
  3. 3.North Dakota State UniversityFargoU.S.A
  4. 4.University of IdahoKimberlyU.S.A

Personalised recommendations