Advertisement

Journal of Biomolecular NMR

, Volume 26, Issue 1, pp 25–37 | Cite as

PROSHIFT: Protein chemical shift prediction using artificial neural networks

  • Jens Meiler
Article

Abstract

The importance of protein chemical shift values for the determination of three-dimensional protein structure has increased in recent years because of the large databases of protein structures with assigned chemical shift data. These databases have allowed the investigation of the quantitative relationship between chemical shift values obtained by liquid state NMR spectroscopy and the three-dimensional structure of proteins. A neural network was trained to predict the 1H, 13C, and 15N of proteins using their three-dimensional structure as well as experimental conditions as input parameters. It achieves root mean square deviations of 0.3 ppm for hydrogen, 1.3 ppm for carbon, and 2.6 ppm for nitrogen chemical shifts. The model reflects important influences of the covalent structure as well as of the conformation not only for backbone atoms (as, e.g., the chemical shift index) but also for side-chain nuclei. For protein models with a RMSD smaller than 5 Å a correlation of the RMSD and the r.m.s. deviation between the predicted and the experimental chemical shift is obtained. Thus the method has the potential to not only support the assignment process of proteins but also help with the validation and the refinement of three-dimensional structural proposals. It is freely available for academic users at the PROSHIFT server: www.jens-meiler.de/proshift.html

chemical shift prediction neural networks NMR proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonneau, R., Tsai, J., Ruczinski, I., Chivian, D., Rohl, C., Strauss, C. E. M. and Baker, D. (2001) Proteins, 45(Suppl.), 119-126.Google Scholar
  2. Braun, D., Wider, G. and Wuethrich, K. (1994) J. Am. Chem. Soc., 116, 8466-8469.Google Scholar
  3. Chandonia, J.-M. and Karplus, M. (1999) Proteins Struct. Funct. Genet., 35, 293-306.Google Scholar
  4. Choy, W.Y., Sanctuary, B.C. and Zhu, G. (1997) J. Chem. Inf. Comput. Sci., 37, 1086-1094.Google Scholar
  5. Clouser, D.L. and Jurs, P.C. (1996) Anal. Chim. Acta, 321, 127-135.Google Scholar
  6. Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289-302.Google Scholar
  7. Gronwald, W., Boyko, R.F., Sonnichsen, F.D., Wishart, D.S. and Sykes, B.D. (1997) J. Biomol. NMR, 10, 165-179.Google Scholar
  8. Ivanciuc, O., Rabine, J.P., Cabrol-Bass, D., Panaye, A. and Doucet, J.-P. (1996) J. Chem. Inf. Comput. Sci., 36, 644-653.Google Scholar
  9. Iwadate, M., Asakura, T. and Williamson, M.P. (1999) J. Biomol. NMR, 13, 199-211.Google Scholar
  10. Jones, D.T. (1999) J. Mol. Biol., 292, 195-202.Google Scholar
  11. Kneller, D.G., Cohen, F.E. and Langridge, R. (1990) J. Mol. Biol., 214, 171-182.Google Scholar
  12. Kvasnicka, V., Sklenak, S. and Pospichal, J. (1992) J. Chem. Inf. Comput. Sci., 32, 742-747.Google Scholar
  13. Le, H. and Oldfield, E. (1994) J. Biomol. NMR, 4, 341-348.Google Scholar
  14. Luman, N.R., King, M.P. and Augspurger, J.D. (2001) J. Comput. Chem., 22, 366-372.Google Scholar
  15. Meiler, J. (1996-2002) www.jens-meiler.deGoogle Scholar
  16. Meiler, J. (2002a) www.jens-meiler.de/jufo.htmlGoogle Scholar
  17. Meiler, J. (2002b) www.jens-meiler.de/proshift.htmlGoogle Scholar
  18. Meiler, J. and Will, M. (2001) J. Chem. Inf. Comput. Sci., 41, 1535-1546.Google Scholar
  19. Meiler, J., Maier, W., Will, M. and Meusinger, R. (2002) J. Magn. Reson., 157, 242-252.Google Scholar
  20. Meiler, J., Müller, M., Zeidler, A. and Schmäschke, F. (2001) J. Mol. Model., 7, 360-369.Google Scholar
  21. Meiler, J., Will, M. and Meusinger, R. (2000) J. Chem. Inf. Comput. Sci., 40, 1169-1176.Google Scholar
  22. Meusinger, R. and Moros, R. (1995) In Software - Entwicklung in der Chemie, Vol. 10, Gasteiger, J., Ed. Gesellschaft Deutscher Chemiker, Frankfurt am Main, pp. 209-216.Google Scholar
  23. Oldfield, E. (1995) J. Biomol. NMR, 5, 217-225.Google Scholar
  24. Osapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436-9444.Google Scholar
  25. Pearson, J.G., Le, H., Sanders, L.K., Godbout, N., Havlin, R.H. and Oldfield, E. (1997) J. Am. Chem. Soc., 119, 11941-11950.Google Scholar
  26. Petersen, T.N., Lundegaard, C., Nielsen, M., Bohr, H., Bohr, J., Brunak, S., Gippert, G.P. and Lund, O. (2000) Proteins Struct. Funct. Genet., 41, 17-20.Google Scholar
  27. Pons, J.L. and Delsuc, M.A. (1999) J. Biomol. NMR, 15, 15-26.Google Scholar
  28. Qian, N. and Sejnowski, T.J. (1988) J. Mol. Biol., 202, 865-884.Google Scholar
  29. Ramirez, B.E., Voloshin, O.N., Camerini-Otero, R.D. and Bax, A. (2000) Protein Sci., 9, 2161.Google Scholar
  30. Robien, W. (1998) Nachr. Chem. Tech. Lab., 46, 74-77.Google Scholar
  31. Rohl, C. and Baker, D. (2002) J. Am. Chem. Soc., 124, 2723-2729.Google Scholar
  32. Rost, B. (1996) Meth. Enzymol., 266, 525-539.Google Scholar
  33. Rost, B. and Sander, C. (1993) J. Mol. Biol., 232, 584-599.Google Scholar
  34. Rost, B., Sander, C. and Schneider, R. (1994) J. Mol. Biol., 235, 13-26.Google Scholar
  35. Salamov, A.A. and Solovyev, V.V. (1997) J. Mol. Biol., 268, 31-36.Google Scholar
  36. Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490-5492.Google Scholar
  37. Stolorz, P., Lapedes, A. and Xia, Y. (1992) J. Mol. Biol., 225, 363-377.Google Scholar
  38. Thomas, S. and Kleinpeter, E. (1995) J. Prakt. Chem./Chem.-Ztg., 337, 504-507.Google Scholar
  39. Wang, Y. and Jardetzky, O. (2002) Protein Sci., 11, 852-861.Google Scholar
  40. Wishart, D.S. and Sykes, B.D. (1994) J. Biomol. NMR, 4, 171-180.Google Scholar
  41. Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995) J. Biomol. NMR, 5, 67-81.Google Scholar
  42. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1992) Biochemistry, 31, 1647-1651.Google Scholar
  43. Wishart, D.S., Watson, M.S., Boyko, R.F. and Sykes, B.D. (1997) J. Biomol. NMR, 10, 329-336.Google Scholar
  44. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids (1HNMR Shifts of Amino Acids), John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore.Google Scholar
  45. Xu, X.-P. and Case, D.A. (2001) J. Biomol. NMR, 21, 321-333.Google Scholar
  46. Zupan, J. and Gasteiger, J. (1993) Neural Networks for Chemists, VCH Verlagsgesellschaft mbH, Weinheim.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of WashingtonSeattleU.S.A.

Personalised recommendations