, Volume 131, Issue 1, pp 37–45 | Cite as

Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata

  • Heathcliffe Riday
  • E. Charles Brummer
  • T. Austin Campbell
  • Diane Luth
  • Patricia M. Cazcarro


Biomass yield heterosis has been shown to exist between Medicago sativasubsp. sativa and Medica gosativa subsp. falcata. The objective of this study was to gain a better understanding of what morphological and genetic factors were most highly correlated with total biomass yield heterosis. We calculated genetic distances among nine sativa and five falcate genotypes based on amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) DNA markers. Genetic distance did not correlate with specific combining ability (SCA) or mid-parent heterosis. In contrast, a morphological distance matrix based on seventeen agronomic and forage quality traits was significantly correlated with heterosis; the agronomic traits of maturity, midseason regrowth, and autumn regrowth showed strong association with heterosis. Heterosis was also correlated with subspecies. We suggest that in many cases progeny heterosis can be accounted for by the interaction of genes controlling morphologically divergent traits between the parents. In other cases, progeny heterosis could also be due to divergence between the parents at particular genetic loci that do not control field-level phenotypic differences. Genetic distanceper se between parental genotypes, based on neutral molecular markers, however, does not reflect the potential of individual genotypes to produce heterosis in their progeny.

alfalfa falcata genetic distance heterosis morphological distance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajmone-Marsan, P., P. Castiglioni, F. Fusari, M. Kuiper & M. Motto, 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96: 219-227.CrossRefGoogle Scholar
  2. Barnes, D.K., E.T. Bingham, R.P. Murphy, O.J. Hunt, D.F. Beard, W.H. Skrdla & L.R. Teuber, 1977. Alfalfa germplasm in the United States: genetic vulnerability, use, and maintenance. USDA-ARS Tech. Bull. 1571. USDA-ARS, Hyattsville, MD.Google Scholar
  3. Beer, S.C., J. Goffreda, T.D. Philips, J.P. Murphy & M.E. Sorrells, 1993. Assessment of genetic variation in Avena sterilis using morphological traits, Isozymes, and RFLPs. Crop Sci 33: 1386-1393.CrossRefGoogle Scholar
  4. Bernardo, R., 1992, Relationship between single-cross performance andmolecular marker heterozygosity. Theor Appl Genet 83: 628-634.CrossRefGoogle Scholar
  5. Bingham, E.T., 1993, Registration of WISFAL alfalfa (Medicago sativa subsp. falcata) tetraploid germplasm derived from diploids. Crop Sci 33: 217-218.CrossRefGoogle Scholar
  6. Bingham, E.T., R.W. Groose, D.R. Woodfield & K.K. Kidwell, 1994. Complimentary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 34: 823-829.CrossRefGoogle Scholar
  7. Busbice, T.H. & J.O. Rawlings, 1974. Combining ability in crosses within and between diverse groups of alfalfa introductions. Euphytica 23: 86-94.CrossRefGoogle Scholar
  8. Cazcarro, P.R., 2000. Masters Thesis: Differentiating M. sativa subsp. sativa and subsp. falcata using Molecular Markers. Iowa State University, Ames, Iowa.Google Scholar
  9. Cheres, M.T., J.F. Miller, J.M. Crane & S.J. Knapp, 2000. Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor Appl Genet 100: 889-894.CrossRefGoogle Scholar
  10. Chowdari, K.V., S.R. Venkatachalam, A.P. Davierwala, V.S. Gupta, P.K. Ranjekar & O.P. Govila, 1998. Hybrid performance and genetic distance as revealed by the (GARA)4 microsatellite and RAPD markers in pearl millet. Theor Appl Genet 97: 163-169.CrossRefGoogle Scholar
  11. Crochemore, M.L., C. Huyghe, M.C. Kerlan, F. Durand & B. Julier, 1996. Partitioning and distribution of RAPD variation in a set of populations of the Medicago sativa complex. Agronomie 16: 421-432.Google Scholar
  12. Crochemore, M.L., C. Huyghe, C. Ecalle & B. Julier, 1998. Structuration of alfalfa genetic diversity using agronomic and morphological characteristics. Relationship with RAPD markers. Agronomie 18: 79-94.Google Scholar
  13. Diwan, N., A.A. Bhagwat, G.R. Bauchan & P.B. Cregan, 1997. Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome 40: 887-895.PubMedGoogle Scholar
  14. Diwan, N., J.H. Bouton, G. Kochert & P.B. Cregan, 2000. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa. Theor Appl Genet 101: 165-172.CrossRefGoogle Scholar
  15. Doyle, J. & J. Doyle. 1989. Isolation of plant DNA from fresh tissue. Focus life technologies 12: 1.Google Scholar
  16. Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics. Longman Essex England.Google Scholar
  17. Fang, G., R. Grumet & S. Hammar, 1990. A quick and inexpensive method for removing Polysaccharides from plant genomic DNA. BioTechniques 13: 52-56.Google Scholar
  18. Griffing, B., 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9: 463-493.Google Scholar
  19. Hood, G., 2001. PopTools. Version 2.2 (build 1).Google Scholar
  20. Julier, B., P. Guy, C. Castillo-Acuna, G. Caubel, C. Ecalle, M. Esquibet, V. Furstoss, C. Huyghe, C. Lavaud, A. Porcheron, P. Pracros & G. Raynal, 1996. Genetic variation for disease and nematode resistances and forage quality in perennial diploid and tetraploid Lucerne populations (Medicago sativa L.). Euphytica 91: 241-250.Google Scholar
  21. Kidwell, K.K., D.F. Austin & T.C. Osborn, 1994a. RFLP evaluation of nine Medicago accessions representing the original germplasm sources for North American alfalfa cultivars. Crop Sci 34: 230-236.CrossRefGoogle Scholar
  22. Kidwell, K.K., E.T. Bingham, D.R. Woodfield & T.C. Osborn, 1994b. Relationships among genetic distance, forage yield and heterozygosity in isogenic diploid and tetraploid alfalfa populations. Theo Appl Genet 89: 323-328.Google Scholar
  23. Kidwell, K.K., L.M. Hartweck, B.S. Yandell, P.M. Crump, J.E. Brummer, J. Moutray & T.C. Osborn, 1999. Forage yields of alfalfa population derived from parents selected on the basis of molecular marker diversity. Crop Sci 39: 223-227.CrossRefGoogle Scholar
  24. Kim, J., F.J. Rohlf & R.R. Sokal, 1992. The accuracy of phylogenetic estimation using the neighbor-joining method. Evol 47: 471-486.CrossRefGoogle Scholar
  25. Lesins, K. & I. Lesins, 1979. Genus Medicago (Leguminasae): A taxogenetic Study. Kluwer, Dordrecht, Netherlands.Google Scholar
  26. Lessen, A.W., E.L. Sorensen, G.L. Posler & L.H. Habers, 1991. Basic alfalfa germplasms differ in nutritive content of forage. Crop Sci 31: 293-296.CrossRefGoogle Scholar
  27. Lui, Z.Q., Y. Pei & Z.J. Pu, 1999. Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat, Triticum aestivum L. Plant Breed 118: 119-123.CrossRefGoogle Scholar
  28. Lynch, M. & B. Walsh. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.Google Scholar
  29. Mantel, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209-220.PubMedGoogle Scholar
  30. Meredith, W.R. Jr & J.S. Brown, 1998. Heterosis and combining ability of cottons originating from different regions of the United States. J Cotton Sci 2: 77-84.Google Scholar
  31. Nei, M. & W.H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269-5273.PubMedCrossRefGoogle Scholar
  32. Riday, H. & E.C. Brummer, 2002a. Forage yield heterosis in alfalfa. Crop Sci 42: 716-723.CrossRefGoogle Scholar
  33. Riday, H. & E.C. Brummer, 2002b. Heterosis of agronomic traits in alfalfa. Crop Sci 42: 1081-1087.CrossRefGoogle Scholar
  34. Riday, H., E.C. Brummer & K.J. Moore, 2002. Heterosis of forage quality in alfalfa. Crop Sci 42: 1088-1093.CrossRefGoogle Scholar
  35. Rolf, F.J., 1997. Numerical Taxonomy and Multivariate Analysis System, Version 2.02i. Exeter Software, New York, NY.Google Scholar
  36. Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.PubMedGoogle Scholar
  37. Sant, V.J., A.G. Patankar, N.D. Sarode, L.B. Mhase, M.N. Sainani, R.B. Deshmukh, P.K. Ranjekar & V.S. Gupta, 1999. Potential of DNA markers in detecting divergence and in analyzing heterosis in Indian elite chickpea cultivars. Theor Appl Genet 98: 1217-1225.CrossRefGoogle Scholar
  38. Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.H. Freeman: San Francisco, CA.Google Scholar
  39. Sriwatanapongse, S. & C.P. Wilsie, 1968. Intra-and intervariety crosses of Medicago sativa L. and Medicago falcata L. Crop Sci 8: 465-466.CrossRefGoogle Scholar
  40. Townsend, C.E., S. Wand & T. Tsuchiya, 1995. Registration C-25, C-26, and C-27 alfalfa germplasms. Crop Sci 35: 289.CrossRefGoogle Scholar
  41. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nuc Acids Reser 23: 21: 4407-4414.Google Scholar
  42. Waldron, L.R., 1920. First generation crosses between two alfalfa species. J Amer Soc Agron 12: 133-143.Google Scholar
  43. Westgate, J.M., 1910. Variegated alfalfa. USDA Bur PIant Ind Bull 169: 1-63.Google Scholar
  44. Zhang, Q., Y.J. Gao, S.H. Yang, R.A. Ragab, M.A. Saghai Maroof & Z.B. Li, 1994. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet 89: 185-192.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Heathcliffe Riday
    • 1
  • E. Charles Brummer
    • 1
  • T. Austin Campbell
    • 2
  • Diane Luth
    • 1
  • Patricia M. Cazcarro
    • 1
  1. 1.Department of AgronomyIowa State UniversityAmesU.S.A
  2. 2.Soybean and Alfalfa Research Laboratory, USDA-ARS, Beltsville Agricultural Research CenterBeltsvilleU.S.A

Personalised recommendations