Advertisement

Reliable Computing

, Volume 9, Issue 2, pp 161–175 | Cite as

Robust Approximation of Offsets, Bisectors, and Medial Axes of Plane Curves

  • João Batista Oliveira
  • Luiz Henrique De Figueiredo
Article

Abstract

Most methods for computing offsets, bisectors, and medial axes of parametric curves in the plane are based on a local formulation of the distance to a curve. As a consequence, the computed objects may contain spurious parts and components, and have to be trimmed. We approach these problems as global optimization problems, and solve them using interval arithmetic, thus generating robust approximations that need not be trimmed.

Keywords

Mathematical Modeling Computational Mathematic Global Optimization Industrial Mathematic Robust Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth, W., Lieger, R., and Schindler, M.: Ray Tracing General Parametric Surfaces Using Interval Arithmetic, The Visual Computer 10(7) (1994), pp. 363-371.Google Scholar
  2. 2.
    Chiang, C.-S., Hoffmann, C. M., and Lynch, R. E.: How to Compute Offsets without Self-Intersection, Technical Report CSD-TR-91-072, Department of Computer Sciences, Purdue University, 1991.Google Scholar
  3. 3.
    Comba, J. L. D. and Stolfi, J.: Affine Arithmetic and Its Applications to Computer Graphics, in: Proceedings of SIBGRAPI'93, 1993, pp. 9-18.Google Scholar
  4. 4.
    de Cusatis Jr., A., de Figueiredo, L. H., and Gattass, M.: Interval Methods for Ray Casting Implicit Surfaces with Affine Arithmetic, in: Proceedings of SIBGRAPI'99, 1999, pp. 65-71.Google Scholar
  5. 5.
    de Figueiredo, L. H.: Surface Intersection Using Affine Arithmetic, in: Proceedings of Graphics Interface'96, 1996, pp. 168-175.Google Scholar
  6. 6.
    de Figueiredo, L. H. and Stolfi, J.: Adaptive Enumeration of Implicit Surfaces with Affine Arithmetic, Computer Graphics Forum 15(5) (1996), pp. 287-296.Google Scholar
  7. 7.
    Dey, T. K., Mehlhorn, K., and Ramos, E. A.: Curve Reconstruction: Connecting Dots with Good Reason, Computational Geometry: Theory and Applications 15(4) (2000), pp. 229-244.Google Scholar
  8. 8.
    Duff, T.: Interval Arithmetic and Recursive Subdivision for Implicit Functions and Constructive Solid Geometry, Computer Graphics 26(2) (1992), pp. 131-138 (SIGGRAPH'92 Proceedings).Google Scholar
  9. 9.
    Elber, G., Lee, I.-K., and Kim, M.-S.: Comparing Offset Curve Approximation Methods, IEEE Computer Graphics & Applications 17(3) (1997), pp. 62-71.Google Scholar
  10. 10.
    Farouki, R. T. and Johnstone, J. K.: The Bisector of a Point and a Plane Parametric Curve, Computer Aided Geometric Design 11(2) (1994), pp. 117-151.Google Scholar
  11. 11.
    Farouki, R. T. and Neff, C. A.: Algebraic Properties of Plane Offset Curves, Computer Aided Geometric Design 7(1-4) (1990), pp. 101-127.Google Scholar
  12. 12.
    Farouki, R. T. and Neff, C. A.: Analytic Properties of Plane Offset Curves, Computer Aided Geometric Design 7(1-4) (1990), pp. 83-99.Google Scholar
  13. 13.
    Farouki, R. T. and Ramamurthy, R.: Degenerate Point/Curve and Curve/Curve Bisectors Arising in Medial Axis Computations for Planar Domains with Curved Boundaries, Computer Aided Geometric Design 15(6) (1998), pp. 615-635.Google Scholar
  14. 14.
    Gleicher, M. and Kass, M.: An Interval Refinement Technique for Surface Intersection, in: Proceedings of Graphics Interface'92, 1992, pp. 242-249.Google Scholar
  15. 15.
    Hansen, E.: Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.Google Scholar
  16. 16.
    Heidrich, W. and Seidel, H.-P.: Ray-Tracing Procedural Displacement Shaders, in: Proceedings of Graphics Interface'98, 1998, pp. 8-16.Google Scholar
  17. 17.
    Heidrich, W., Slusallik, P., and Seidel, H.-P.: Sampling Procedural Shaders Using Affine Arithmetic, ACM Transactions on Graphics 17(3) (1998), pp. 158-176.Google Scholar
  18. 18.
    Kim, D.-S.: Polygon Offsetting Using a Voronoi Diagram and Two Stacks, Computer-Aided Design 30(14) (1998), pp. 1069-1076.Google Scholar
  19. 19.
    Kimmel, R. and Bruckstein, A. M.: Shape Offsets via Level Sets, Computer-Aided Design 25(5) (1993), pp. 154-162.Google Scholar
  20. 20.
    Kimmel, R., Shaked, D., and Kiryati, N.: Skeletonization via Distance Maps and Level Sets, Computer Vision and Image Understanding 62(3) (1995), pp. 382-391.Google Scholar
  21. 21.
    Kreinovich, V.: Interval Software, http://www.cs.utep.edu/interval-comp/intsoft.html.Google Scholar
  22. 22.
    Lee, I.-K.: Curve Reconstruction from Unorganized Points, Computer Aided Geometric Design 17(2) (2000), pp. 161-177.Google Scholar
  23. 23.
    Maekawa, T.: An Overview of Offset Curves and Surfaces, Computer-Aided Design 31(3) (1999), pp. 165-173.Google Scholar
  24. 24.
    Mitchell, D. P.: Robust Ray Intersection with Interval Arithmetic, in: Proceedings of Graphics Interface'90, 1990, pp. 68-74.Google Scholar
  25. 25.
    Montanari, U.: A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance, Journal of the ACM 15(4) (1968), pp. 600-624.Google Scholar
  26. 26.
    Moon, H. P.: Minkowski Pythagorean Hodographs, Computer Aided Geometric Design 16(8) (1999), pp. 739-753.Google Scholar
  27. 27.
    Moore, R. E.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.Google Scholar
  28. 28.
    Mudur, S. P. and Koparkar, P. A.: Interval Methods for Processing Geometric Objects, IEEE Computer Graphics & Applications 4(2) (1984), pp. 7-17.Google Scholar
  29. 29.
    Pham, B.: Offset Curves and Surfaces: A Brief Survey, Computer-Aided Design 24(4) (1992), pp. 223-229.Google Scholar
  30. 30.
    Pottmann, H. and Peternell, M.: Applications of Laguerre Geometry in CAGD, Computer Aided Geometric Design 15(2) (1998), 165-186.Google Scholar
  31. 31.
    Ramanathan, M. and Gurumoorthy, B.: Constructing Medial Axis Transform of Planar Domains with Curved Boundaries, Computer-Aided Design (2002), to appear.Google Scholar
  32. 32.
    Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS, Addison-Wesley, 1990.Google Scholar
  33. 33.
    Samet, H.: The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990.Google Scholar
  34. 34.
    Saux, E. and Daniel, M.: Data Reduction of Polygonal Curves Using B-Splines, Computer-Aided Design 31(8) (1999), pp. 507-515.Google Scholar
  35. 35.
    Snyder, J. M.: Generative Modeling for Computer Graphics and CAD, Academic Press, 1992.Google Scholar
  36. 36.
    Snyder, J. M.: Interval Analysis for Computer Graphics, Computer Graphics 26(2) (1992), pp. 121-130 (SIGGRAPH'92 Proceedings).Google Scholar
  37. 37.
    Suffern, K. G. and Fackerell, E. D.: Interval Methods in Computer Graphics, Computers and Graphics 15(3) (1991), pp. 331-340.Google Scholar
  38. 38.
    Toth, D. L.: On Ray Tracing Parametric Surfaces, Computer Graphics 19(3) (1985), pp. 171-179 (SIGGRAPH'85 Proceedings).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • João Batista Oliveira
    • 1
  • Luiz Henrique De Figueiredo
    • 2
  1. 1.Faculdade de Informática, Pontifícia Universidade Católica doPorto Alegre, RSBrazil
  2. 2.IMPA-Instituto de Matemática Pura e AplicadaRio de Janeiro, RJBrazil

Personalised recommendations