Journal of Statistical Physics

, Volume 91, Issue 3–4, pp 807–814 | Cite as

Damage Spreading in a 2D Ising Model with Swendsen–Wang Dynamics

  • Haye Hinrichsen
  • Eytan Domany
  • Dietrich Stauffer

Abstract

Damage spreading for Ising cluster dynamics is investigated numerically by using random numbers in a way that conforms with the notion of submitting the two evolving replicas to the same thermal noise. Two damage spreading transitions are found; damage does not spread either at low or high temperatures. We determine some critical exponents at the high-temperature transition point, which seem consistent with directed percolation.

Damage spreading cluster algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. A. Kauffman, J. Theor. Biol. 22:437 (1969).Google Scholar
  2. 2.
    M. Creutz, Ann. Phys. 167:62 (1986).Google Scholar
  3. 3.
    B. Derrida and G. Weisbuch, Europhys. Lett. 4:657 (1987); H. Stanley, D. Stauffer, J. Kertész, and H. Herrmann, Phys. Rev. Lett. 59:2326 (1987).Google Scholar
  4. 4.
    P. Grassberger, Psysica A 214:547 (1995).Google Scholar
  5. 5.
    N. Jan and L. de Arcangelis, Ann. Rev. Comp. Phys., D. Stauffer, ed. (World Scientific, Singapore, 1994), Vol. 1, p. 1.Google Scholar
  6. 6.
    A. M. Mariz, H. J. Herrmann, and L. de Arcangelis, J. Stat. Phys. 59:1043 (1990).Google Scholar
  7. 7.
    H. Hinrichsen, S. Weitz, and E. Domany, J. Stat. Phys. 88:617 (1997).Google Scholar
  8. 8.
    H. Hinrichsen and E. Domany, Phys. Rev. E 54:94 (1997).Google Scholar
  9. 9.
    P. Grassberger, J. Stat. Phys. 79:13 (1995).Google Scholar
  10. 10.
    P. Grassberger, J. Phys. A 22:L1103 (1989); H. H. Kim and H. Park, Phys. Rev. Lett. 73:2579 (1994); H. Park, M. H. Kim, and H. Park, Phys. Rev. E 52:5664 (1995); I. Jensen, J. Phys. A 26:3921 (1993); D. ben-Avraham, F. Leyvraz, and S. Redner, Phys. Rev. E 50:1843 (1994); H. Hinrichsen, Phys. Rev. E 55:219 (1997).Google Scholar
  11. 11.
    S. Wang and R. H. Swendsen, Physica A 167:565 (1990).Google Scholar
  12. 12.
    D. Stauffer, Physica A 171:471 (1991).Google Scholar
  13. 13.
    M. Flanigan and P. Tamayo, Physica A 215:461 (1995); R. M. Hackl, H. G. Mattutis, J. M. Singer, Th. Husslein and I. Morgenstern, Int. J. Mod. Phys. C 4:1117 (1993).Google Scholar
  14. 14.
    R. Matz, D. L. Hunter, and N. Jan, J. Stat. Phys. 74:903 (1994).Google Scholar
  15. 15.
    P. Grassberger, J. Phys. A 22:3673 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Haye Hinrichsen
    • 1
    • 2
  • Eytan Domany
    • 1
  • Dietrich Stauffer
    • 3
    • 4
  1. 1.Department of Physics of Complex SystemsWeizmann InstituteRehovotIsrael
  2. 2.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany
  3. 3.School of Physics and AstronomyRaymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv UniversityRamat Aviv, Tel AvivIsrael
  4. 4.Institute for Theoretical PhysicsCologne UniversityCologneGermany

Personalised recommendations