Oxidation of Metals

, Volume 59, Issue 3–4, pp 285–301 | Cite as

Role of Water Vapor in Chromia-Scale Growth at Low Oxygen Partial Pressure

  • M. Hänsel
  • W.J. Quadakkers
  • D.J. Young
Article

Abstract

The oxidation behavior of pure chromium and ODS-Cr alloys in Ar-H2-H2O and Ar-O2-H2O was studied at 1000°C. At high oxygen potentials, the addition of H2O to the gas had negligible effect on the scaling behavior. However, at low oxygen potentials, when the pH2O/pH2 ratio was held constant, the oxidation rate increased with water partial pressure. Increasing values of pH2O/pH2 led to more rapid rates. At fixed pH2O values, the rate increased with increasing pH2. Compact scales were formed under all conditions. In addition Cr2O3 blades grew on the scale surface when pure chromium was reacted with H2O/H2 mixtures, but not in reaction with O2/H2O. These blades did not form when Y2O3 dispersion-strengthened material was reacted. A model, in which oxide growth was sustained by diffusion of chromium vacancies and adsorption of H2O on oxide exposed to low oxygen-activity gas led to the formation of hydroxyl species, explained most of the complex effects of gas composition on scale growth and blade formation. However, it failed to account for the observed increase in scaling rate with pH2 at fixed pH2O. The latter effect is ascribed to alteration of an additional contribution to diffusion from chromium interstitials.

diffusion point defects chromium ODS alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. Wersing, E. Ivers-Tiffe, M. Schiessl, and H. Greiner, Proc. Symp. Solid Oxide Fuel Cells, Nagoya, Japan, 13–14 Nov. 1989 (Science House, Tokyo), 1989, p. 33.Google Scholar
  2. 2.
    W. J. Quadakkers, H. Greiner, and W. Köck, Proc. First European Solid Oxide Fuel Cell Forum, 3–7 October 1994 (Lucerne, Switzerland, 1994), p. 525.Google Scholar
  3. 3.
    H. P. Martinez and W. Köck, Industrie 46, 26(1993).Google Scholar
  4. 4.
    Th. Malkow, W. J. Quadakkers, H. Nickel, and L. Singheiser, Jül-Bericht 3589, ISSN 0944–2952, FZ Juelich, IWV-2 (1998).Google Scholar
  5. 5.
    M. Hänsel, W. J. Quadakkers, L. Singheiser, and H. Nickel, Jül-Bericht 3583, ISSN 0944–2952, FZ Juelich, IWV-2 (1998).Google Scholar
  6. 6.
    W. J. Quadakkers, J. F. Norton, S. Canetoli, K. Schuster, and A. Gil, Proc. 3rd Conf. Microscopy of Oxidation, p. 609(1996).Google Scholar
  7. 7.
    X. G. Zheng and D. J. Young, Oxid. Met., 42, 163–190 (1994).Google Scholar
  8. 8.
    F. Armanet, A. Vejux, G. Johannesson, and G. Beranger, Oxid. Metals 15, 3–8 (1981).Google Scholar
  9. 9.
    E. A. Polman, T. Fransen, and P. J. Gellings, Oxid. Met., 32, 433–447 (1989).Google Scholar
  10. 10.
    S. Roure, F. Czerwinski, and A. Petric, Oxid. Met., 42, 75–102 (1994).Google Scholar
  11. 11.
    F. Armanet, G. Beranger, and D. David, Proc. 8th Intern. Congr. Metallic Corros. (DECHEMA, Frankfurt, 1981), p. 735–738Google Scholar
  12. 12.
    G. Raynaud and R. Rapp, Oxid. Met. 21, 89(1984).Google Scholar
  13. 13.
    D. A. Voss, E. P. Butler, and T. E. Mitchell, Metall. Trans. A 13, 929–935 (1982).Google Scholar
  14. 14.
    F. C. Frank, Acta Crystallogr. 4, 497–550 (1951).Google Scholar
  15. 15.
    N. A. Gokcen, J. Amer. Chem. Soc. 73, 3789(1951).Google Scholar
  16. 16.
    C. T. Lynch, ed., Handbook of Materials Science, (CRC Press, Cleveland, Ohio, 1974), p. D-180.Google Scholar
  17. 17.
    D. L. Douglass, P. Kofstad, A. Rahmel, and G. C. Wood, Oxid. Met. 45, 529–620 (1996).Google Scholar
  18. 18.
    C. Wagner, Z. Phys. Chem. B 21, 25(1933).Google Scholar
  19. 19.
    C. Wagner, and K. Grünwald, Z. Phys. Chem. B 32, 447(1937).Google Scholar
  20. 20.
    C. Wagner and K. Grünwald, Z. Phys. Chem. B 40, 455(1938).Google Scholar
  21. 21.
    P. Kofstad, Oxid. Met. 44, 3(1995).Google Scholar
  22. 22.
    P. Kofstad and K. P. Lillerud, J. Electrochem. Soc. 127, 2410(1980).Google Scholar
  23. 23.
    P. Kofstad, High Temperature Corrosion (Elsevier Science, New York, 1988).Google Scholar
  24. 24.
    F. A. Kröger, The Chemistry of Imperfect Crystals, 2nd edn. (North-Holland, Amsterdam, 1974).Google Scholar
  25. 25.
    B. Tveten, G. Hultquist, and T. Norby, Oxid. Met. 51, 221(1999).Google Scholar
  26. 26.
    T. Norby, J. Phys. IV 3, 99(1993).Google Scholar
  27. 27.
    T. Norby, Adûan. Ceram. 23, 107(1987).Google Scholar
  28. 28.
    W. J. Quadakkers, H. Holzenbrecher, K. Briefs, and H. Beske, in The Role of Actiûe Elements: the Oxidation Behaûior of High Temperature Metals and Alloys (E. Lang, ed., Elsevier, London, 1988).Google Scholar
  29. 29.
    B. A. Pint, Oxid. Met. 45, 1(1996).Google Scholar
  30. 30.
    W. J. Quadakkers, J. F. Norton, J. H. Penkalla, U. Breuer, A. Gil, T. Rieck, and M. Hänsel, Proc. 3rd Conf. Microscopy of Oxidation, p. 221(1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. Hänsel
    • 1
    • 2
  • W.J. Quadakkers
    • 2
  • D.J. Young
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Institute for Materials and Processes in Energy Systems (IWV)JülichGermany

Personalised recommendations