Breast Cancer Research and Treatment

, Volume 78, Issue 3, pp 323–335 | Cite as

Cyclin D1, EMS1 and 11q13 Amplification in Breast Cancer

  • Christopher J. Ormandy
  • Elizabeth A. Musgrove
  • Rina Hui
  • Roger J. Daly
  • Robert L. Sutherland


Chromosome locus 11q13 is frequently amplified in a number of human cancers including carcinoma of the breast where up to 15% carry this chromosomal abnormality. Originally 11q13 amplification was thought to involve a single amplicon spanning many megabases, but more recent data have identified four core regions within 11q13 that can be amplified independently or together in different combinations. Although the region harbors several genes with known or suspected oncogenic potential, the complex structure of the amplicons and the fact that 11q13 is gene-rich have made definitive identification of specific genes that contribute to the genesis and progression of breast cancer a difficult and continuing process. To date CCND1, encoding the cell cycle regulatory gene cyclin D1, and EMS1, encoding the filamentous actin binding protein and c-Src substrate cortactin, are the favored candidates responsible for the emergence of two of the four amplification cores.

breast cancer cortactin/EMS1 cyclin D1 oncogenes prognostic markers 11q13 amplification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Teixeira MR, Pandis N, Heim S: Cytogenetic clues to breast carcinogenesis. Genes Chromosome Cancer 33: 1-16, 2002Google Scholar
  2. 2.
    Bieche I, Lidereau R: Genetic alterations in breast cancer. Genes Chromosome Cancer 14: 227-251, 1995Google Scholar
  3. 3.
    Karlseder J, Zeillinger R, Schneeberger C, Czerwenka K, Speiser P, Kubista E, Birnbaum D, Gaudray P, Theillet C: Patterns of DNA amplification at band q13 of chromosome 11 in human breast cancer. Genes Chromosome Cancer 9: 42-48, 1994Google Scholar
  4. 4.
    Hui R, Campbell DH, Lee CSL, McCaul K, Horsfall DJ, Musgrove EA, Daly RJ, Seshadri R, Sutherland RL: EMS1 amplification can occur independently of CCND1 or INT2 amplification at 11q13 and may identify different phenotypes in primary breast cancer. Oncogene 15: 1617-1623, 1997Google Scholar
  5. 5.
    Bekri S, Adelaide J, Merscher S, Grosgeorge J, Caroli BF, Perucca LD, Kelley PM, Pebusque MJ, Theillet C, Birnbaum D, Gaudray P: Detailed map of a region commonly amplified at 11q13?q14 in human breast carcinoma. Cytogenet Cell Genet 79: 125-131, 1997Google Scholar
  6. 6.
    Courjal F, Cuny M, Simony-Lafontaine J, Louason G, Speiser P, Zeillinger R, Rodriguez C, Theillet C: Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res 57: 4360-4367, 1997Google Scholar
  7. 7.
    Adam L, Vadlamudi R, Kondapaka S, Chernoff J, Mendelsohn J, Kumar R: Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J Biol Chem 273: 28238-28246, 1998Google Scholar
  8. 8.
    Vadlamudi RK, Adam L, Wang R, Mandal M, Nguyen D, Sahin A, Chernoff J, Hung M, Kumar R: Regulatable expression of p21-activated kinase-1 promotes anchorageindependent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275: 36238-36244, 2000Google Scholar
  9. 9.
    Edwards PA, Hiby S, Papkoff J, Bradbury J: Hyperplasia of mouse mammary epithelium induced by expression of the Wnt-1 (int-1) oncogene in reconstituted mammary gland. Oncogene 7: 2041-2051, 1992Google Scholar
  10. 10.
    Bradbury JM, Niemeyer C, Dale T, Edwards P: Alterations of the growth characteristics of the fibroblast cell line C3H 10T1/2 by members of the Wnt gene family. Oncogene 9: 2597-2603, 1994Google Scholar
  11. 11.
    Bradbury JM, Edwards P, Niemeyer C, Dale T: Wnt-4 expression induces a pregnancy-like growth pattern in reconstituted mammary glands in virgin mice. Dev Biol 170: 553-563, 1995Google Scholar
  12. 12.
    Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey S, McMahon J, McMahon A, Weinberg R: Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14: 650-654, 2000Google Scholar
  13. 13.
    Naylor S, Smalley M, Robertson D, Gusterson B, Edwards P, Dale T: Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. J Cell Sci 113: 2129-2138, 2000Google Scholar
  14. 14.
    Szepetowski P, Simon MP, Grosgeorge J, Huebner K, Bastard C, Evans GA, Tsujimoto Y, Birnbaum D, Theillet C, Gaudray P: Localization of 11q13 loci with respect to regional chromosomal breakpoints. Genomics 12: 738-744, 1992Google Scholar
  15. 15.
    Ormandy CJ, Lee CS, Ormandy HF, Fantl V, Shine J, Peters G, Sutherland RL: Amplification, expression, and steroid regulation of the preprogalanin gene in human breast cancer. Cancer Res 58: 1353-1357, 1998Google Scholar
  16. 16.
    Peters G, Brookes S, Smith R, Dickson C: Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 33: 367-377, 1983Google Scholar
  17. 17.
    Lidereau R, Callahan R, Dickson C, Peters G, Escot C, Ali IU: Amplification of the int-2 gene in primary human breast tumors. Oncogene Res 2: 285-291, 1988Google Scholar
  18. 18.
    Zhou DJ, Casey G, Cline MJ: Amplification of human int-2 in breast cancers and squamous carcinomas. Oncogene 2: 279-282, 1988Google Scholar
  19. 19.
    Sakamoto H, Mori M, Taira M, Yoshida T, Matsukawa S, Shimizu K, Sekiguchi M, Terada M, Sugimura T: Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc Natl Acad Sci USA 83: 3997-4001, 1986Google Scholar
  20. 20.
    Delli Bovi P, Basilico C: Isolation of a rearranged human transforming gene following transfection of Kaposi sarcoma DNA. Proc Natl Acad Sci USA 84: 5660-5664, 1987Google Scholar
  21. 21.
    Delli Bovi P, Curatola AM, Kern FG, Greco A, Ittmann M, Basilico C: An oncogene isolated by transfection of Kaposi's sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 50: 729-737, 1987Google Scholar
  22. 22.
    Dickson C, Deed R, Dixon M, Peters G: The structure and function of the int-2 oncogene. Prog Growth Factor Res 1: 123-132, 1989Google Scholar
  23. 23.
    Fantl V, Richards MA, Smith R, Lammie GA, Johnstone G, Allen D, Gregory W, Peters G, Dickson C, Barnes DM: Gene amplification on chromosome band 11q13 and oestrogen receptor status in breast cancer. Eur J Cancer 26: 423-429, 1990Google Scholar
  24. 24.
    Schuuring E, Verhoeven E, van Tinteren H, Peterse JL, Nunnink B, Thunnissen FB, Devilee P, Cornelisse CJ, van de Vijver MJ, Mooi WJ, Michalides RJ: Amplification of genes within the chromosome 11q13 region is indicative of poor prognosis in patients with operable breast cancer. Cancer Res 52: 5229-5234, 1992Google Scholar
  25. 25.
    Tsuda T, Tahara E, Kajiyama G, Sakamoto H, Terada M, Sugimura T: High incidence of coamplification of hst-1 and int-2 genes in human esophageal carcinomas. Cancer Res 49: 5505-5508, 1989Google Scholar
  26. 26.
    Ladher R, Anakwe K, Gurney A, Schoenwolf G, Francis-West P: Identification of synergistic signals initiating inner ear development. Science 290: 1965-1967, 2000Google Scholar
  27. 27.
    Bautista S, Olivier M: CCND1 and FGFR1 coamplification results in the colocalization of 11q13 and 8p12 sequences in breast tumor nuclei. Genes Chromosome Cancer 22: 268-277, 1998Google Scholar
  28. 28.
    Cuny M, Kramar A, Courjal F, Johannsdottir V, Iacopetta B, Fontaine H, Grenier J, Culine S, Theillet C: Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res 60: 1077-1083, 1999Google Scholar
  29. 29.
    Musgrove EA, Hamilton JA, Lee CS, Sweeney KJ, Watts CK, Sutherland RL: Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 13: 3577-3587, 1993Google Scholar
  30. 30.
    Musgrove EA, Lee CS, Buckley MF, Sutherland RL: Cyclin D1 induction in breast cancer cells shortens G1 and is suffi-cient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 91: 8022-8026, 1994Google Scholar
  31. 31.
    Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ: Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7: 1559-1571, 1993Google Scholar
  32. 32.
    Resnitzky D, Gossen M, Bujard H, Reed SI: Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14: 1669-1679, 1994Google Scholar
  33. 33.
    Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV: Mammary hyperplasia and carcinoma in MMTVcyclin D1 transgenic mice. Nature 369: 669-671, 1994Google Scholar
  34. 34.
    Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C: Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9: 2364-2372, 1995Google Scholar
  35. 35.
    Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA: Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82: 621-630, 1995Google Scholar
  36. 36.
    Yu Q, Geng Y, Sicinski P: Specific protection against breast cancers by cyclin D1 ablation: Nature 411: 1017-1021, 2001Google Scholar
  37. 37.
    Said TK, Luo L, Medina D: Mouse mammary hyperplasias and neoplasias exhibit different patterns of cyclins D1 and D2 binding to cdk4. Carcinogenesis 16: 2507-2513, 1995Google Scholar
  38. 38.
    Hirai H, Sherr CJ: Interactions of D-type cyclins with a novel myb-like transcription factor, DMP1. Mol Cell Biol 16: 6457-6467, 1996Google Scholar
  39. 39.
    Inoue K, Sherr CJ: Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonised by D-type cyclins through a cyclin-dependent-kinase-independent mechanism. Mol Cell Biol 18: 1590-1600, 1998Google Scholar
  40. 40.
    Bienvenu F, Gascan H, Coqueret O: Cyclin D1 represses STAT3 activation through a Cdk4-independent mechanism. J Biol Chem 276: 16840-16847, 2001Google Scholar
  41. 41.
    Knudsen KE, Cavenee WK, Arden KC: D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res 59: 2297-2301, 1999Google Scholar
  42. 42.
    Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, Direnzo J, Pestell RG, Hinds PW, Dowdy SF, Brown M, Ewen ME: Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 17: 5338-5347, 1997Google Scholar
  43. 43.
    Zwijsen RML, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJAM: CDK-independent activation of estrogen receptor by cyclin D1. Cell 88: 405-415, 1997Google Scholar
  44. 44.
    Geng Y, Yu Q, Sicinska E, Das M, Bronson RT, Sicinski P: Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc Natl Acad Sci USA 98: 194-199, 2001Google Scholar
  45. 45.
    Tong W, Pollard JW: Genetic evidence for the interactions of cyclin D1 and p27Kip1 in mice. Mol Cell Biol 21: 1319-1328, 2001Google Scholar
  46. 46.
    Sweeney KJ, Swarbrick A, Sutherland RL, Musgrove EA: Lack of relationship between CDK activity and G1 cyclin expression in breast cancer cells. Oncogene 16: 2865-2878, 1998Google Scholar
  47. 47.
    Zwicker J, Brusselbach S, Jooss KU, Sewing A, Behn M, Lucibello FC, Muller R: Functional domains in cyclin D1: pRb-kinase activity is not essential for transformation. Oncogene 18: 19-25, 1999Google Scholar
  48. 48.
    Buckley MF, Sweeney KJE, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CKW, Musgrove EA, Sutherland RL: Expression and amplification of cyclin genes in human breast cancer. Oncogene 8: 2127-2133, 1993Google Scholar
  49. 49.
    Bartkova J, Lukas J, Müller H, Lützhøft D, Strauss M, Bartek J: Cyclin D1 protein expression and function in human breast cancer. Int J Cancer 57: 353-361, 1994Google Scholar
  50. 50.
    Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, Barnes D, Peters G: Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54: 1812-1817, 1994Google Scholar
  51. 51.
    Alle K, Henshall S, Field A, Sutherland R, Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Can Res 4: 847-854, 1998Google Scholar
  52. 52.
    Weinstat-Saslow D, Merino M, Manrow R, Lawrence J, Bluth R, Wittenbel K, Simpson J, Page D, Steeg P: Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1: 1257-1260, 1995Google Scholar
  53. 53.
    Schuuring E, Verhoeven E, Mooi W, Michalides R: Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1 within the amplified chromosome 11q13 region in human carcinomas. Oncogene 7: 355-361, 1992Google Scholar
  54. 54.
    Hui R, Ball JR, Macmillan RD, Kenny FS, Prall OWJ, Campbell DH, Cornish AL, McClelland RA, Daly RJ, Forbes JF, Blamey RW, Musgrove EA, Robertson JFR, Nicholson RI, Sutherland RL: EMS1 gene expression in primary breast cancer: relationship to cyclin D1 and oestrogen receptor expression and patient survival. Oncogene 17: 1053-1059, 1998Google Scholar
  55. 55.
    Schuuring E, Vernoeven E, Litvinov S, Michalides RJAM: The product of the EMS1 gene, amplified and overexpressed in human carcinomas, is homologous to a v-src substrate and is located in cell-substratum contact sites. Mol Cell Biol 13: 2891-2898, 1993Google Scholar
  56. 56.
    Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT: Identification and characterization of a novel cytoskeletonassociated pp60src substrate. Mol Cell Biol 11: 5113-5124, 1991Google Scholar
  57. 57.
    Weed SA, Karginov A, Schafer DA, Weaver AM, Kinley AW, Cooper JA, Parsons JT: Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 151: 29-40, 2000Google Scholar
  58. 58.
    Weed SA, Parsons JT: Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20: 6418-6434, 2001Google Scholar
  59. 59.
    Mizutani K, Miki H, He H, Maruta H, Takenawa T: Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res 62: 669-674, 2002Google Scholar
  60. 60.
    Uruno T, Liu J, Zhang P, Fan Y, Egile C, Li R, Mueller SC, Zhan X: Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature Cell Biology 3: 259-266, 2001Google Scholar
  61. 61.
    Weaver AM, Karginov AV, Kinley AW, Weed SA, Li Y, Parsons JT, Cooper JA: Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol 11: 370-374, 2001Google Scholar
  62. 62.
    Patel AS, Schechter GL, Wasilenko WJ, Somers KD: Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene 16: 3227-3232, 1998Google Scholar
  63. 63.
    Huang C, Liu JL, Haudenschild CC, Zhan X: The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem 273: 25770-25776, 1998Google Scholar
  64. 64.
    Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC: An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18: 4440-4449, 1999Google Scholar
  65. 65.
    Li Y, Tondravi M, Liu J, Smith E, Haudenschild CC, Kaczmarek M, Zhan X: Cortactin potentiates bone metastasis of breast cancer cells. Cancer Res 61: 6906-6911, 2001Google Scholar
  66. 66.
    Du Y, Weed SA, Xiong W-C, Marshall TD, Parsons JT: Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol Cell Biol 18: 5838-5851, 1998Google Scholar
  67. 67.
    Serra-Pages C, Medley QG, Tang M, Hart A, Streuli M: Liprins, a family of LAR transmembrane proteintyrosine phosphatase-interacting proteins. J Biol Chem 273: 15611-15620, 1998Google Scholar
  68. 68.
    Schaapveld RQ, Schepens JT, Robinson GW, Attema J, Oerlemans FT, Fransen JA, Streuli M, Wieringa B, Hennighausen L, Hendriks WJ: Impaired mammary gland development and function in mice lacking LAR receptor-like tyrosine phosphatase activity. Dev Biol 188: 134-146, 1997Google Scholar
  69. 69.
    Berns EM, Klijn JG, van Staveren IL, Portengen H, Noordegraaf E, Foekens JA: Prevalence of amplification of the oncogenes c-myc, HER2/neu, and int-2 in one thousand human breast tumours: correlation with steroid receptors. Eur J Cancer 28: 697-700, 1992Google Scholar
  70. 70.
    Fantl V, Smith R, Brookes S, Dickson C, Peters G: Chromosome 11q13 abnormalities in human breast cancer.Cancer Surv 18: 77-94, 1993Google Scholar
  71. 71.
    Berns E, Foekens J, van Staveren I, van Putten W, de Koning H, Portengen H, Klijn J: Oncogene amplification and prognosis in breast cancer: relationship with systemic treatment. Gene 159: 11-18, 1995Google Scholar
  72. 72.
    Borg A, Sigurdsson H, Clark GM, Ferno M, Fuqua SA, Olsson H, Killander D, McGurie WL: Association of INT2/HST1 coamplification in primary breast cancer with hormonedependent phenotype and poor prognosis. Br J Cancer 63: 136-142, 1991Google Scholar
  73. 73.
    Henry JA, Hennessy C, Levett DL, Lennard TW, Westley BR, May FE: int-2 amplification in breast cancer: association with decreased survival and relationship to amplification of c-erbB-2 and c-myc. Int J Cancer 53: 774-780, 1993Google Scholar
  74. 74.
    Schuuring E, Verhoeven E, van Tinteren H, Peterse J, Nunnink B, Thunnissen F, Devilee P, Cornelisse C, van de Vijver M, Mooi W, Michalides R: Amplification of genes within the 11q13 region is indicative of poor prognosis in patients with operable breast cancer. Cancer Res 52: 5229-5234, 1992Google Scholar
  75. 75.
    Seshadri R, Lee CSL, Hui R, McCaul K, Horsfall DJ, Sutherland RL: Cyclin D1 amplification is not associated with reduced overall survival in primary breast cancer but may predict early relapse in patients with features of good prognosis. Clin Cancer Res 2: 1177-1184, 1996Google Scholar
  76. 76.
    Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Yamamoto H, Miyajima N, Toyoshima K, Yamamoto T, Yokota J, Yoshida T, Sakamoto H, TeradaM, Sugimura T: Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: hst-1/int-2 and c-erbB-2/ear-1. Cancer Res 49: 3104-3108, 1989Google Scholar
  77. 77.
    Hui R, Cornish AL, McClelland RA, Robertson JFR, Blamey RW, Musgrove EA, Nicholson RI, Sutherland RL: Cyclin D1 and estrogen receptor mRNA expression are positively correlated in primary breast cancer. Clin Cancer Res 2: 923-928, 1996Google Scholar
  78. 78.
    Rodrigo JP, Garcia LA, Ramos S, Lazo PS, Suarez C: EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck. Clin Cancer Res 6: 3177-3182, 2000Google Scholar
  79. 79.
    Sainsbury JR, Farndon JR, Needham GK, Malcolm AJ, Harris AL: Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet i 1398-1402, 1987Google Scholar
  80. 80.
    Gullick WJ: The role of the epidermal growth factor receptor and the c-erbB-2 protein in breast cancer. Int J Cancer 5(suppl): 55-61,1990Google Scholar
  81. 81.
    Daly RJ: Take your partners, please-signal diversification by the erbB family of receptor tyrosine kinases. Growth Factors 16: 255-263, 1999Google Scholar
  82. 82.
    Huang C, Ni YS, Wang T, Gao YM, Haudenschild CC, Zhan X: Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem 272: 13911-13915, 1997Google Scholar
  83. 83.
    Campbell DH, Sutherland RL, Daly RJ: Signaling pathways and structural domains required for phosphorylation of EMS1/cortactin. Cancer Res 59: 5376-5385, 1999Google Scholar
  84. 84.
    van Damme H, Brok H, Schuuring-Scholtes E, Schuuring E: The redistribution of cortactin into cell-matrix contact sites in human carcinoma cells with 11q13 amplification is associated with both overexpression and post-translational modification. J Biol Chem 272: 7374-7380, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Christopher J. Ormandy
    • 1
  • Elizabeth A. Musgrove
    • 1
  • Rina Hui
    • 1
  • Roger J. Daly
    • 1
  • Robert L. Sutherland
    • 1
  1. 1.Cancer Research ProgramGarvan Institute of Medical Research, St. Vincent's HospitalSydneyAustralia

Personalised recommendations