Journal of Statistical Physics

, Volume 91, Issue 5–6, pp 979–990 | Cite as

A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media

  • D. Benedetto
  • E. Caglioti
  • J. A. Carrillo
  • M. Pulvirenti
Article

Abstract

We consider a nonlinear Fokker–Planck equation for a one-dimensional granular medium. This is a kinetic approximation of a system of nearly elastic particles in a thermal bath. We prove that homogeneous solutions tend asymptotically in time toward a unique non-Maxwellian stationary distribution.

Granular media inelastic collisions, kinetic equations Fokker–Planck 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Arnold, L. L. Bonilla, and P. A. Markowich, Liapunov functionals and large-time asymptotics of mean-field nonlinear Fokker-Planck equations, to appear on Transport Theory and Stat. Phys. Google Scholar
  2. 2.
    D. Benedetto and E. Caglioti, in preparation.Google Scholar
  3. 3.
    D. Benedetto, E. Caglioti, and M. Pulvirenti, A kinetic equation for granular media, Math. Mod. and Num. An. 31(5):615–641 (1997).Google Scholar
  4. 4.
    B. Bernu and R. Mazighi, One-dimensional bounce of inelastically colliding marbles on a wall, Jour. of Phys. A: Math. Gen. 23:5745–5754 (1990).Google Scholar
  5. 5.
    L. L. Bonilla, J. A. Carrillo, and J. Soler, Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system, SIAM J. Appl. Math. 57:1343–1372 (1997).Google Scholar
  6. 6.
    F. Bouchut and J. Dolbeault, On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombian and Newtonian potentials, Diff. and Integ. Equations 8:487–514 (1995).Google Scholar
  7. 7.
    S. Campbell, Rapid Granular Flows, Ann. Rev. of Fluid Mech. 22:57–92 (1990).Google Scholar
  8. 8.
    J. A. Carrillo, Global weak solutions for the initial-boundary value problems to the Vlasov-Poisson-Fokker-Planck system, to appear on Math. Meth. in the Appl. Sci. Google Scholar
  9. 9.
    P. Constantin, E. Grossman, and M. Mungan, Inelastic collisions of three particles on a line as a two-dimensional billiard, Physica D 83:409–420 (1995).Google Scholar
  10. 10.
    Y. Du, H. Li, and L. P. Kadanoff, Breakdown of hydrodynamics in a one-dimensional system of inelastic particles, Phys. Rev. Lett. 74(8):1268–1271 (1995).Google Scholar
  11. 11.
    S. E. Esipov and T. Pöschel, Boltzmann Equation and Granular Hydrodynamics, (preprint) (1995).Google Scholar
  12. 12.
    I. Goldhirsch and G. Zanetti, Clustering instability in dissipative gases, Phys. Rev. Lett. 70:1619–1622 (1993).Google Scholar
  13. 13.
    P. K. Haff, Grain flow as a fluid mechanic phenomenon, J. Fluid Mech. 134:401–430 (1983).Google Scholar
  14. 14.
    Mc Kean, Lectures in Diff. Eqs, A. K. Aziz, ed. Von Nostrand, Vol. II, (1964), p. 177.Google Scholar
  15. 15.
    S. Mac Namara and W. R. Young, Inelastic collapse and clumping in a one-dimensional granular medium, Phys. of Fluids A 4(3):496–504 (1992).Google Scholar
  16. 16.
    S. Mac Namara and W. R. Young, Kinetic of a one-dimensional granular in the quasi elastic limit medium, Phys. of Fluids A 5(1):34–45 (1993).Google Scholar
  17. 17.
    N. Sela and I. Goldhirsch, Hydrodynamics of a one-dimensional granular medium, Phys. of Fluids 7(3):34–45 (1995).Google Scholar
  18. 18.
    H. D. Victory and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson-Fokker-Planck systems, Indiana Univ. Math. J. 39:105–157 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • D. Benedetto
    • 1
  • E. Caglioti
    • 1
  • J. A. Carrillo
    • 2
  • M. Pulvirenti
    • 1
  1. 1.Dipartimento di MatematicaUniversità di Roma La SapienzaRomeItaly
  2. 2.Departamento de Matemática AplicadaUniversidad de GranadaGranadaSpain

Personalised recommendations